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‘ Abstract | CLM: Saturation _

l Computation of K, I 1

Numerous studies have shown a positive soil moisture-rainfall feedback through observational data, as Organic Percolating — 0.9
well as, modeling studies. Spatial variability of topography, soils, and vegetation play a significant role in Organic § | g
determining the response of land surface states (soil moisture) and fluxes (runoff, evapotranspirtiaon); Perl;lglr;-ﬁng e '
but their explicit accounting within Land Surface Models (LSMs) is computationally expensive. Addi- - . 0.7
tionally, anthropogenic climate change is altering the hydrologic cycle at global and regional scales. l l
Characterizing the sensitivity of groundwater recharge is critical for understanding the effects of climate © g . '1 08
change on water resources. In order to explicitly represent lateral redistribution of soil moisture and uni- Computation of K, & Ky ® " " SON
fied treatment of the unsaturated-saturated zone in the subsurface within the CLM, we propose coupling QI FOCREE vV | _
PFLOTRAN and CLM. Olr\lgoarlic — — ; CLM-PFLOTRAN: Saturation 1
In this work we present preliminary results obtained from the PFLOTRAN-CLM over a single soil column. Percolating RAGRAS 1 I
Before preceding with the coupled model simulations over the entire globe, we propose to investigate E, o
the impact of improved representation of subsurface processes through a PFLOTRAN alone simulation _ _ _ _ _ _ L _ £ 0.8
over the Continental United States (CONUS), forced with CLM outputs. Figure 1: Schematic representation of organic and mineral fraction within CLM soil layers g 3 iy
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‘ PFLOTRAN-CLM coupled simulation over a single soil column | Figure 4: Time series of simulated soil saturation by CLM and CLM-PFLOTRAN o
Figure 7: Three-monthly average evapotranspiration

PFLOTRAN: Massively Parallel Reactive Flow and Transport Code
E ' t set imilar to M Il and Miller (2005, J. of HydroMeterolo
‘ —l xperiment setup similar to Maxwell and Miller ( y gy) ‘ Model domain over the Continental United States |
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« PFLOTRAN is a multiphase flow and multicomponent geochemical transport simulator currently under S S U 105 S S S UL S L U N U S
development as part of the DOE SciDAC-2 Program. S S
Tl PFLOTRAN mesh Topography
- Key PFLOTRAN features/capabilities either implemented or currently being implemented(*) include: E i l I
0.5_ ................................................................................................. |
— Object-oriented data structures — Multiphase flow, Nonisothermal transport i R I N
— PETSc solvers and preconditioners _ Mu|ticomponent reactive transport 107 10~ 10° 10' 10°
— Modular linkage to physicochemical _ Biogeochemistry Shortwave Radiation . " -
Processes Equilibri g itirat . del 200 AR AR R 1 4.0
— Adaptive mesh refinement (AMR) based on — SqUIIDTITm ant mUuitrate SoTption motels S L O |
SAMRA] — Surface Complexation and ion exchange _ 150 SRR R EE S A S L S e 1 i ,
— Unstructured Grids* — Colloid-facilitated transport with mechanistic S0
— Multicontinuum subgrid model* surface complexation model = Figure 5: Unstructured mesh of PFLOTRAN and topography for CONUS 20
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(a) Domain average profile (b) Top soil layer: Hydraulic conductivity in x-dir
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Figure 2: Time series of rainfathapayghortwave radiation forcings
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Figure 8: Three-monthly average infiltration
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5i0)==V-(@+aq  glpos)=-V-(pu)+ Qu 0s e o s oo Pt of i conguct » Investigate the impact of incorporating lateral transport of soil moisture by performing offline PFLO-
) . 0007 _ L oLy L TRAN simulation driven with CLM forcings.
Kk, (S | I A . . :
q=—-K(O)V()+2z) U= — ( T ) V(P + pgz) 10 I°-°°6 I9° « Study the feedback of lateral transport of soil moisture on surface processes by performing coupled
Slo.o0s o, PFLOTRAN-CLM simulations.
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0 - Soil moisture ¢ - Soil porosity s - Soil saturation | T A EEEE U A Figure 6: (a) Domain average vertical profiles of organic matter, rooting profile, sand, and clay for
K - Hydraulic conductivity - Permeability  p - Density of water e CONUS domain. (b) Top layer hydraulic conductivity and anisotropy ratio. (c) Bottom layer hydraulic
P - Pressure head 1y - Matric potential Figure 3: Time series of simulated overland flow and infiltration by CLM and CLM-PFLOTRAN conductivity.

16!h Annual CESM Workshop 20 - 23 June 2011 The Village, Breckenridge, Colorado



