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Abstract

Numerous studies have shown a positive soil moisture-rainfall
feedback through observational data, as well as, modeling stud-
ies. Spatial variability of topography, soils, and vegetation play a
significant role in determining the response of land surface states
(soil moisture) and fluxes (runoff, evapotranspirtiaon); but their ex-
plicit accounting within Land Surface Models (LSMs) is computa-
tionally expensive. Additionally, anthropogenic climate change is
altering the hydrologic cycle at global and regional scales. Char-
acterizing the sensitivity of groundwater recharge is critical for un-
derstanding the effects of climate change on water resources. In
order to explicitly represent lateral redistribution of soil moisture
and unified treatment of the unsaturated-saturated zone in the
subsurface within the CLM, we propose coupling PFLOTRAN and
CLM.
In this work we present preliminary results obtained from the
PFLOTRAN-CLM over a single soil column. Before preceding with
the coupled model simulations over the entire globe, we propose
to investigate the impact of improved representation of subsurface
processes through a PFLOTRAN alone simulation over the Conti-
nental United States (CONUS), forced with CLM outputs.

PFLOTRAN: Massively Parallel Reactive Flow and
Transport Code

• PFLOTRAN is a multiphase flow and multicomponent geo-
chemical transport simulator currently under development as
part of the DOE SciDAC-2 Program.

• Key PFLOTRAN features/capabilities either implemented or
currently being implemented(∗) include:

– Object-oriented data
structures

– PETSc solvers and
preconditioners

– Modular linkage to
physicochemical
processes

– Adaptive mesh
refinement (AMR) based
on SAMRAI

– Unstructured Grids∗

– Multicontinuum subgrid
model∗

– Multiphase flow, Non-
isothermal transport

– Multicomponent reactive
transport

– Biogeochemistry
– Equilibrium and multirate

sorption models
– Surface complexation

and ion exchange
– Colloid-facilitated

transport with
mechanistic surface
complexation model

PFLOTRAN: Unstructured mesh example
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Figure 1: V-Channel problem simulated by PFLOTRAN
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PFLOTRAN: Unstructured mesh problem with 20,075,520 cells
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Figure 2: Performance of PFLOTRAN for a 20-million cell V-
Channel problem

Model formulations

CLM PFLOTRAN

∂
∂t(θ) = −∇ · (q) + qw

∂
∂t(ρφs) = −∇ · (ρu) +Qw

q = −K(θ)∇(ψ + z) u = −
(
κκr(s)
µ

)
∇(P + ρgz)

ψ = ψsat

(
θ
θsat

)−B
ψ = 1

α

(
s−sr
1−sr

)−1/λ
K(θ) = Ksat

(
θ
θsat

)3+2B
κ(s) =

(
s−sr
1−sr

)3+2/λ
θ = φs K = ρgκ

µ P = ρgψ

θ - Soil moisture φ - Soil porosity s - Soil saturation
K - Hydraulic conductivity κ - Permeability ρ - Density of water
P - Pressure head ψ - Matric potential
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Figure 3: Schematic representation of organic and mineral frac-
tion within CLM soil layers

PFLOTRAN-CLM coupled simulation over a single soil
column

Experiment setup similar to Maxwell and Miller (2005, J. of Hy-
droMeterology)
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Figure 4: Time series of rainfall and shortwave radiation forcings
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CLM CLM−PFLOTRAN
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Figure 5: Time series of simulated overland flow and infiltration
by CLM and CLM-PFLOTRAN

Figure 6: Time series of simulated soil saturation by CLM and
CLM-PFLOTRAN

Model domain over the Continental United States

TopographyPFLOTRAN mesh

Figure 7: Unstructured mesh of PFLOTRAN and topography for
CONUS
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

1.5

2

2.5

3

3.5

So
il 

D
ep

th
 [m

]

 

 

Organic matter Root profile Sand Clay

0.0       0.1        0.2         0.3        0.4         0.5
3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

So
il 

D
ep

th
 [m

]

ClayRooting profile Sand

Organic matter

(a)  Domain average profile

Figure 8: (a) Domain average vertical profiles of organic matter,
rooting profile, sand, and clay for CONUS domain. (b) Top layer
hydraulic conductivity and anisotropy ratio. (c) Bottom layer hy-
draulic conductivity.
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Figure 9: Annual average evapotranspiration and infiltration sim-
ulated by CLM

Future Directions

• Investigate the impact of incorporating lateral transport of soil
moisture by performing offline PFLOTRAN simulation driven
with CLM forcings.

• Study the feedback of lateral transport of soil moisture on sur-
face processes by performing coupled PFLOTRAN-CLM simu-
lations.
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