

Portable Performance Characterization of the CCSM with TAU

SC'05 November 12-18, 2005 Seattle, WA

<u>Co-Authors</u>

- National Center for Atmospheric Research (NCAR)
 - George R. Carr Jr, gcarr@ucar.edu
- Oak Ridge National Laboratory (ORNL)
 - John B. Drake, drakejb@ornl.gov
 - Michael W. Ham, hammw@ornl.gov
 - Forrest M. Hoffman, forrest@climate.ornl.gov
 - Patrick H. Worley, worleyph@ornl.gov
- University of Oregon
 - Sameer Shende, sameer@cs.uoregon.edu
- ... and too many others to list

<u>Acknowledgements</u>

- The National Center for Atmospheric Research is funded by the National Science Foundation.
- ORNL research sponsored by the Atmospheric and Climate Research Division and the Office of Mathematical, Information, and Computational Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-AC05-000R22725 with UT-Battelle, LLC.
- These slides have been coauthored by a contractor of the U.S. Government under contract No. DE-AC05-000R22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes
- Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the United States Department of Energy under Contract No. DE-AC05-000R22725.
- The research at the University of Oregon is supported by the Office of Science, U.S. Department of Energy under Contract No. DE-FG02-05ER23680 and DE-FG03-01ER25501.

<u>Overview</u>

- CCSM3 and Standalone CAM
 Introduction
- Tau Introduction
- Machine Targets
- Some Examples of Analysis

CAM Introduction

- Community Atmospheric Model
- SPMD (single binary)
- Incorporates some land, sea ice, and ocean aspects
- Can be configured as Atmospheric Model for use with CCSM

CCSM Introduction

- CCSM, the Community Climate System Model, is a coupled model ٠ for simulating the earth's climate system.
- Components in CCSM3 include ٠
 - Atmospheric Model CAM 3.0
 - Ocean Model modified version of POP 1.4.3
 - Sea Ice Model CSIM5
 - Land Model CLM3
 - Coupler CPL6
- All components use MPI ٠
- Some can use OpenMP on platforms where available ٠
- MPMD (multi-program, multi-data) 5 different binaries all ٠ running on separate processor sets under one MPI environment
- Each component has different scaling and performance aspects ٠

NCAR

Supported Machines

- IBM Power3, Power4 fully validated
- Xeon Linux Clusters (GigE and Myrinet) validated T31x3
- Cray X1 recently validated T31x3, just starting T85x1
- SGI Altix baseline validation complete for T31x3
- Earth Simulator fully validated on pre-release, update planned
- Opteron Linux Clusters (Myrinet) work underway
- Xeon Linux Clusters (InfiniBand) work continuing
- Cray XT3 and XD1 work begun

NCAR's Bluesky

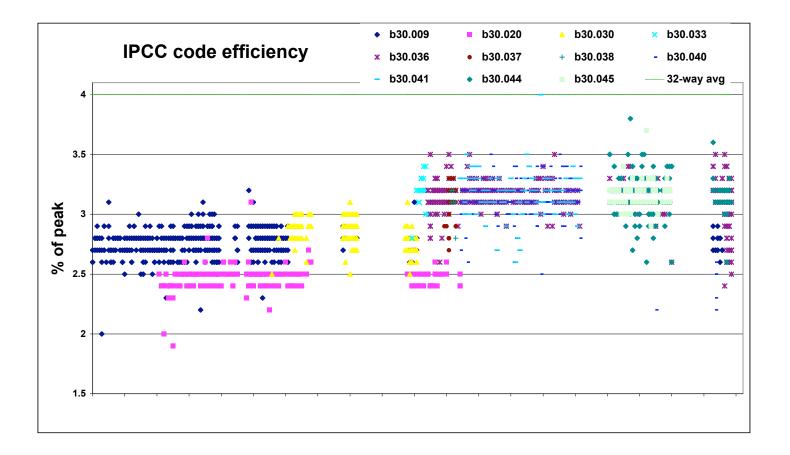
IBM clustered SMP system

- 1.3 GHz Power4 CPUs
- Colony Switch
- 76 8-way SMP nodes
- 25 32-way SMP nodes
- 2GB memory per CPU

Total of 1600 CPUs, 3.2TBytes of memory, and 8.32 peak TFLOPs

Phoenix - Cray X1E

- Cray X1E with 256 SMP nodes
- 4 Multi-Streaming Processors (MSP) per node
- 4 Single Streaming Processors (SSP) per MSP
- Two 32-stage 64-bit wide vector units running at 1.13 GHz and one 2-way superscalar unit running at 565 MHz per SSP
- 2 MB Ecache per MSP
- 8 GB of memory per node


Total of 1024 processors (MSPs), 2 TB of memory, and 18 TF/s peak performance.

CCSM Bluesky Percent of Peak

The Perfomance Characterization Problem

- CCSM is supported on many platforms
 - Need machine independent way to evaluate performance
 - Need easy way to automate "standard" performance characterization as well as complex indepth analysis
 - CCSM is a complex MPMD application
 - CCSM is currently undergoing massive science changes (finite volume, biogeochemistry)

<u>A Solution: TAU</u>

- Supports both auto instrumentation and user defined events
- Support for MPI and OpenMP
- Available on multiple platforms
- Low impact instrumentation using hardware counter where available
- Easily works into application build process

Project Status

×

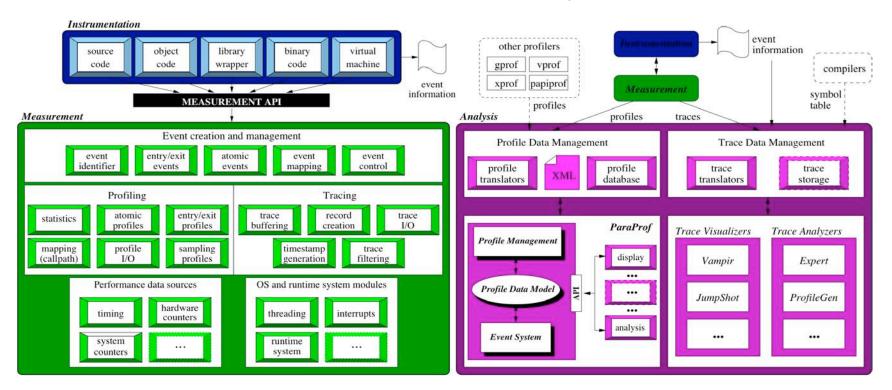
- Tau installed on
 - NCAR's Bluesky (IBM Power4)
 - ORNL's Cheetah (IBM Power4)
 - ORNL's Phoenix (Cray X1E)
 - University of Oregon's NIC (IBM Power4) (???? Regatta)

In 4 hours on Bluesky

- Installed Tau
- Performed Basic Functionality Test
- Performed First Instrumentation of CAM

• Tau tested

- CAM MPI only
- CAM MPI/OMP begun
- CCSM MPI only



TAU Performance System

- Portable Profiling and Tracing Tools
- Automatic Instrumentation of Code

TAU Features

×

- Call path profiling
- Compensation of profiling overhead
- Selective instrumentation (exclude/include)
- Throttling of lightweight routines at runtime
- Support for PAPI hardware counters
- Visualizers for TAU traces: Vampir, Jumpshot
- ParaProf scalable profile browser
- Modular, configurable measurement library
- Easy integration in build systems

TAU Modifications in CAM

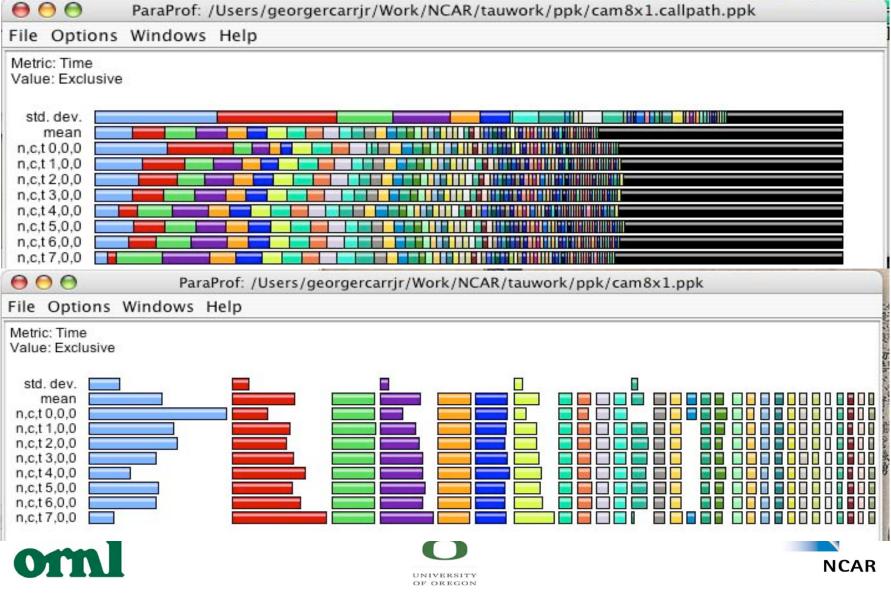
Choose TAU measurement library/stub makefile:

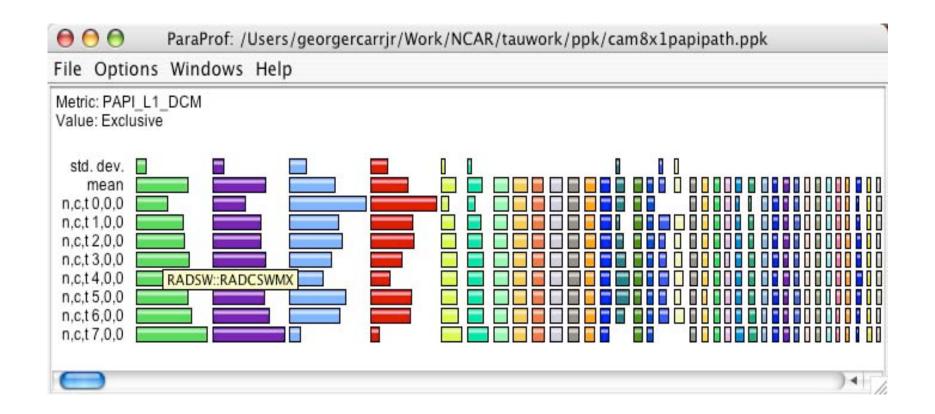
- export TAU_MAKEFILE=/home/bluesky/sshende/tau2/ibm64/lib/ Makefile.tau-nocomm-mpi-pdt
- export TAU_OPTIONS='-optVerbose -optPdtF95Opts="-p -DCAM -DNO_SHR_VMATH -DHIDE_SHR_MSG -DAIX" -optTauSelectFile=/home/bluesky/sshende/camscripts/select.tau'

Throttle instrumentation in lightweight routines

- export TAU_THROTTLE=1
- export TAU_THROTTLE_NUMCALLS=100000
- export TAU_THROTTLE_PERCALL=10
- Disables instrumentation in any routine that executes over 100000 times and has an inclusive time per call of less than 10 microseconds!

Choose TAU's compiler script

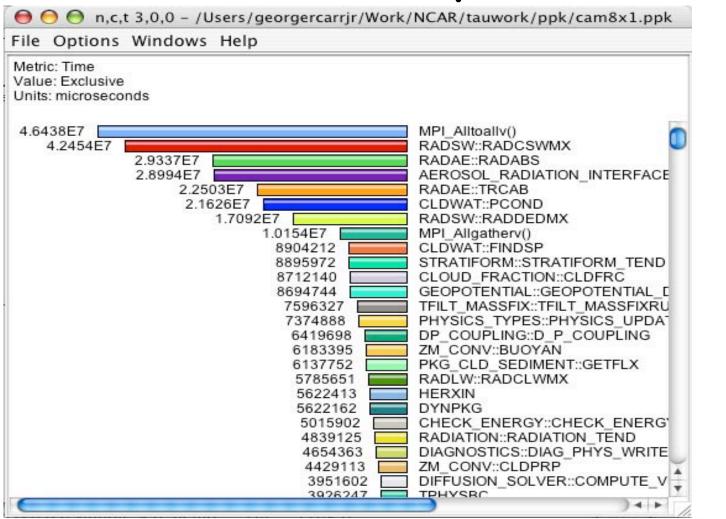

- Original: \$cfgdir/configure -dyn eul -res 64x128 -spmd
- With TAU: \$cfgdir/configure -dyn eul -res 64x128 -spmd -fc tau_f90.sh
- No Changes to source code or configuration system!



NCAR

Normal and Stacked Displays

Using PAPI to Get Hardware Counters



Call Thread Bar Graph

<u>CallPath Display</u>

File Optic	ons Windows Help		Mean Call Path I	Data – cam8x1.callpath.comp.ppk/	
Metric I	Name: Time				
	By: Exclusive			_	
Units: s				Parei	nte
onnes. s					112
					6
	Exclusive	Inclusive	Calls/Tot.Calls	Name[id]	
	EXCLUSIVE	Inclusive	calls/ fot.calls	Name[10]	
				K	
	46.233	46.233	361/1445	CLM CAMMOD::LP ALL2ALL CHUNK TO CLUMP[1431]	
	0.636	0.636	361/1445	CLM_CAMMOD::LP_ALL2ALL_CLUMP_TO_CHUNK[1432]	
	7.8E-4	7.8E-4	1/1445	CLM_CAMMOD::LP_ALL2ALL_CLUMP_TO_CHUNK_INIT[1433]	
	6.89	6.89	722/1445	MPIALLTOALLV[1693]	tino
>	53.759	53.759	1445	MPI_Alltoallv()[1710]	itine
	43.15	94.325	7680/7680	RADIATION::RADIATION TEND[1824]	
>	43.15	94.325	7680	RADSW::RADCSWMX[1829]	
	0.36	0.36	7342.5/7342.5	AEROSOL_RADIATION_INTERFACE::AER_LAYER_MASS_GET[25]	
	28.439	28.439	139508/139508	AEROSOL RADIATION INTERFACE:: AER LAYER RAD PROPS GET[26]	
	0.087	0.087	7680/7680	AEROSOL_RADIATION_INTERFACE::SW_DIAGNOSTICS_INIT[30]	
	0.071	0.14	7342.5/7342.5	CMPARRAY_MOD::CMPDAYNITE_1D_1[1442]	
	0.314	0.314	44055/44055	CMPARRAY_MOD::CMPDAYNITE_1D_R_COPY[1443]	\mathbf{i}
	0.071	0.361	7342.5/7342.5	CMPARRAY_MOD::CMPDAYNITE_2D_R[1444]	
	0.673	0.673	73425/73425	CMPARRAY_MOD::CMPDAYNITE_2D_R_COPY[1445]	hildr
	0.076	0.154	7342.5/7342.5		IIIIUI
	1.186	1.186	29370/60090	CMPARRAY_MOD::EXPDAYNITE_2D_R[1449]	
	0.501	1.154	58375.4/430597	QUICK_SORT::QUICK_SORT_1[1800]	
	18.308	18.308	139508/139508	RADSW::RADDEDMX[1830]	
	29.495	58.421	640/640	RADLW::RADCLWMX[1827]	
>	29.495	58.421	640	RADAE::RADABS[1802]	
	25.211	25.211	449280/449280	RADAE::TRCAB[1807]	
	3.715	3.715	66560/66560	RADAE::TRCABN[1808]	
	28.439	28.439	139508/139508	RADSW::RADCSWMX[1829]	
>	28.439	28.439	139508	AEROSOL RADIATION INTERFACE:: AER LAYER RAD PROPS GET[26]	-

Thread Statistics Text

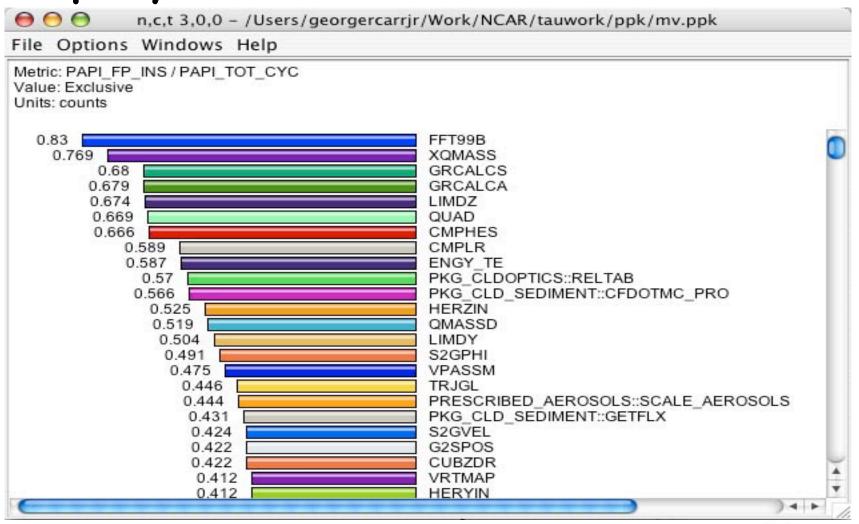
000 n.c.t, 3.0.0 - /Users/georgercarrir/Work/NCAR/tauwork/ppk/cam8x1.ppk File Options Windows Help Metric: Time Sorted By: Exclusive Units: microseconds #Calls #Child Calls %Total Time Exclusive Inclusive Inclusive/Call Name ----MPI Alltoally() 9.8 4.6438E7 4.6438E7 1445 0 32136.857 19.1 4.2454E7 9.0665E7 7680 498394 11805.28 RADSW: : RADCSWMX 11.6 2.9337E7 5.5137E7 640 515840 86150.85 RADAE: : RADABS 6.1 2.8994E7 2.8994E7 145901 0 198.721 AEROSOL RADIATION IN' 4.7 2.2503E7 2.2503E7 449280 0 50.086 RADAE::TRCAB 6.6 2.1626E7 3.1227E7 23104 123105 1351.569 CLDWAT::PCOND 117.145 3.6 1.7092E7 1.7092E7 145901 0 0 2.1 1.0154E7 1.0154E7 722 14063.115 MPI Allgatherv() CLDWAT: : FINDSP 1.9 23104 0 385.397 8904212 8904212 13.8 8895972 6.5369E7 23104 323456 2829.337 STRATIFORM::STRATIFO 2.0 8712140 46208 46208 208.894 9652591 1.8 8694744 8694744 300352 0 28.949 1.8 7596327 8408582 2888 8664 2911.559 TFILT MASSFIX::TFILT 7374888 1.607E7 462080 300352 34.777 3.4 1.7 6419698 7942025 361 92416 22000.069 DP COUPLING::D P COU 1.3 6183395 6183395 23104 0 267.633 2.0 6137752 9356218 46208 46208 202.48 13.8 5785651 6.5378E7 7680 40686 8512.7 RADLW: : RADCLWMX 641.828 1.2 5622413 5622413 8760 HERXIN 0 16.5 5622162 7.8591E7 361 40889 217702.795 DYNPKG 1.1 5015902 36.184 5015902 138624 0 35.7 4839125 1.6973E8 23104 269185 7346.204 4 1

<u>User Event Statistics</u>

rted By: Number of	fSamples				
NumSamples	Max	Min	Mean	Std. Dev	Name
1449	135680	4	71412	63118	Message size for all-to-al
796	2940000	4	38891	297852	Message size for broadcast
723	5312	4	4090.3	1224.6	Message size for all-gathe
556	61680	4	18417	10370	Message size for gather
57	483328	8192	148749	124331	Message size for scatter

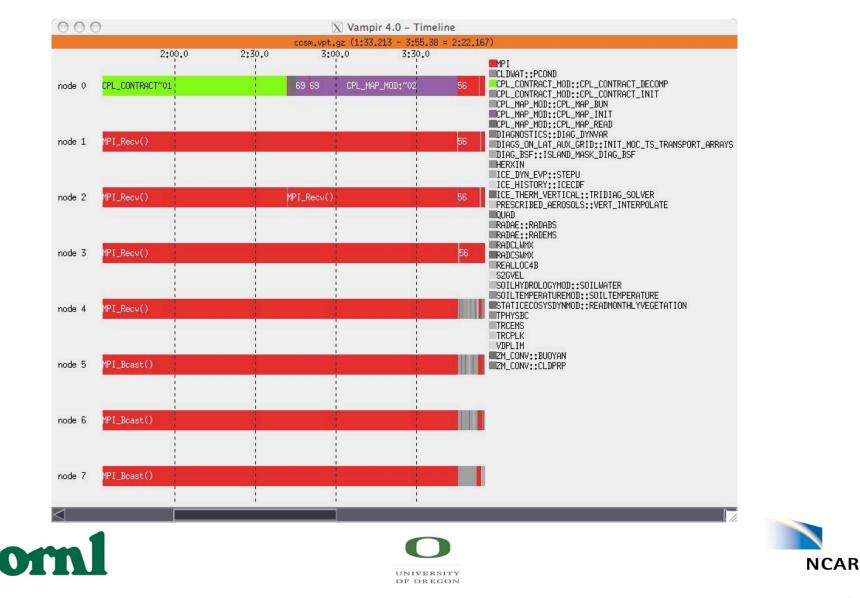
Thread Statistics Table

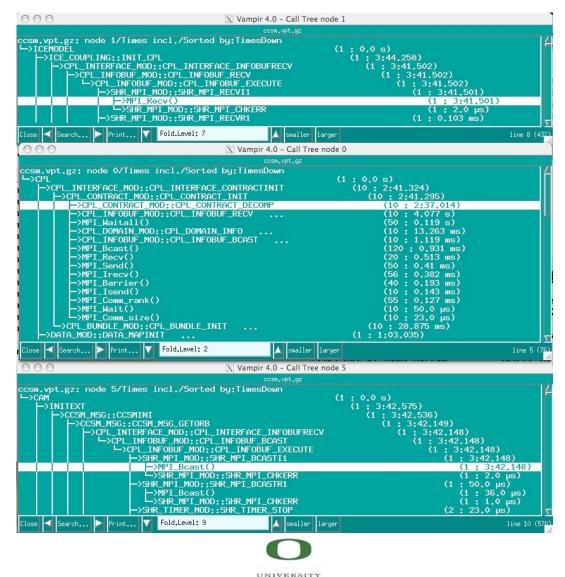
Mean Statistics - cam8x1.	Mean Statistics – cam8x1.callpath.comp.ppk/				
ile Options Windows Help					
Name	Time % 🗸	Time	Calls		
CAM	0.0%	0.122	1		
TEPON	0.0%	0.059	1		
T PHYSPKG	0.2%	0.906	361		
CLM_CAMMOD::CLM_CAMRUN	12.2%	65.443	361		
TPHYSBC	0.8%	4.233	23,104		
RADIATION::RADIATION_TEND	1.0%	5.096	23,104		
RADSW::RADCSWMX	8.1%	43.15	7,680		
AEROSOL_RADIATION_INTERFACE::AER_LAYER_RAD_PROPS_GET	5.3%	28.439	139,507.5		
RADSW::RADDEDMX	3.4%	18.308	139,507.5		
CMPARRAY_MOD::CMPDAYNITE_2D_R	0.1%	0.361	7,342.		
AEROSOL_RADIATION_INTERFACE::AER_LAYER_MASS_GET	0.1%	0.36	7,342.5		
CMPARRAY_MOD::EXPDAYNITE_2D_R	0.2%	1.186	29,37		
CMPARRAY_MOD::EXPDAYNITE_1D_I	0.0%	0.154	7,342.5		
QUICK_SORT::QUICK_SORT_1	0.2%	1.154	58,375.375		
CMPARRAY_MOD::CMPDAYNITE_1D_I	0.0%	0.14	7,342.		
AEROSOL_RADIATION_INTERFACE::SW_DIAGNOSTICS_INIT	0.0%	0.087	7,680		
CMPARRAY_MOD::CMPDAYNITE_2D_R_COPY	0.1%	0.673	73,42		
CMPARRAY_MOD::CMPDAYNITE_1D_R_COPY	0.1%	0.314	44,05		
RADLW::RADCLWMX	13.3%	71.032	7,68		
AEROSOL_RADIATION_INTERFACE::COLLECT_SW_AER_MASSES	0.8%	4.316	7,68		
PARAM_CLDOPTICS::PARAM_CLDOPTICS_CALC	0.2%	1.294	7,68		
AEROSOL_RADIATION_INTERFACE::AEROSOL_COLUMN_OPTICAL_DIAG	0.1%	0.731	7,68		
AEROSOL_RADIATION_INTERFACE::AEROSOL_MASS_DIAGNOSTICS	0.1%	0.719	7,68		
RAD_CONSTITUENTS::RAD_CONSTITUENTS_GET	0.5%	2.896	46,08		
RADIATION::RADINP	0.1%	0.331	7,68		
CLDSAV	0.0%	0.236	7,68		
WV_SATURATION::AQSAT	0.0%	0.216	7,68		
E ZENITH	0.1%	0.568	23,104		
RADHEAT::RADHEAT_TEND	0.1%	0.54	23,104		


<u>Creating Derived Metrics</u>

	ParaProf			
 File Options Help Applications Standard Applications Default App Default App New Application New Experiment Merror Mr.ppk/ppk/tauwork/NCAR/Work/georgei GET_TIME_OF_DAY PAPI_FP_INS PAPI_FP_INS / GET_TIME_OF_DAY PAPI_FP_INS / GET_TIME_OF_DAY PAPI_FP_INS / GET_TIME_OF_DAY PAPI_FP_INS / PAPI_TOT_CYC DB Applications 		Field Name Application ID Experiment ID Trial ID Metric ID	Value PAPI_FP_INS / PAPI_TOT_CY 1 0 0 4	
Argument 1:	1:0:0:4 - PAPI_FP_INS / PAPI_TOT_CYC	•		
Argument 2:	1:0:0:4 - PAPI_FP_INS / PAPI_TOT_CYC		Apply operation	
ornl	UNIVE		NCA	

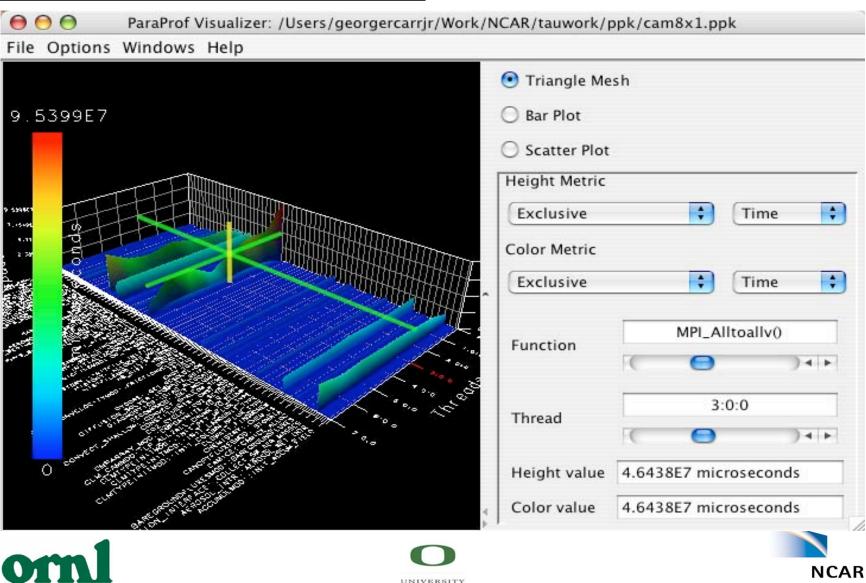
Display of Derived Metric





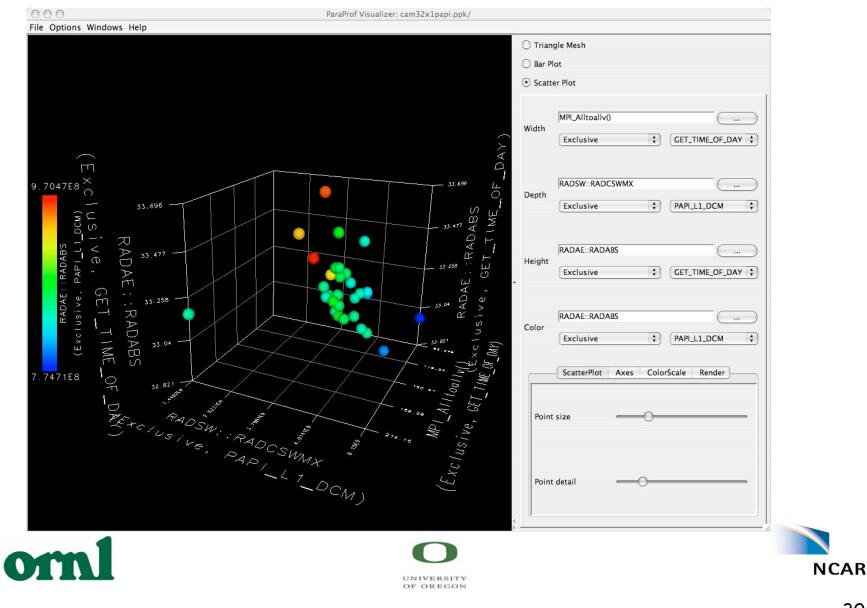
Load Imbalance: Timeline

<u>CCSM CallTree: TAU +Vampir</u> 🛪



OF OREGON

3D Visualization



OF OREGON

<u>3D ScatterPlot</u>

For More Information

See:

- NCAR's Bluesky
 - http://www.cisl.ucar.edu/computers/bluesky/
- The Community Climate System Model (CCSM)
 - http://www.ccsm.ucar.edu/models/ccsm3.0/
- ORNL's Phoenix
 - http://www.ccs.ornl.gov/Phoenix/Phoenix.html
- Tuning and Analysis Utilities (TAU)
 - http://www.cs.uoregon.edu/research/tau/home.php
- Program Database Toolkit (PDT)
 - http://www.cs.uoregon.edu/research/pdt/home.php
- Perfromance Data Standard and API
 - http://icl.cs.utk.edu/papi/
- Kit for Objective Judgement and Knowledge-based Detection of Performance Bottlenecks (KOJAK)
 - http://icl.cs.utk.edu/kojak/
- Vampir commercial trace visualization tool
 - http://www.vampir-ng.de/
- OpenMP Pragma and Region Instrumentor (OPARI)
 - http://www.fz-juelich.de/zam/kojak/opari

