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The International Land Model Benchmarking (ILAMB) project is a model-data intercom-
parison and integration project designed to improve the performance of the land compo-
nent of Earth system models. ILAMB is more than a workflow system that automates
the generation of common scalars and plot comparisons to observational data. We aim
to provide scientists and model developers with a tool to gain insight into model behav-
ior. Thus, a salient feature of the ILAMB package is our synthesis methodology, which
provides users with a high-level understanding of model performance.

Fundamental Difficulty

There are a few difficulties in comparing models to observational datasets.
• The observational datasets and models are not discretized on the same spatial grid.
This requires some form of interpolation to make the data comparable which has an
effect on the scores and integrated values.

• Even once interpolated to the same grid, the observational datasets and models all
define land in different ways. Comparisons can only be done on shared areas which
are particular to the variables being compared.

For example, consider the following plots of gross primary productivity (gpp), plotted over
portions of Central and South America for emphasis. We have included mean gpp values
in the plots of Figure 1. From these plots it is easy to appreciate the disparity in reso-
lutions and definitions of land. We handle these differences by composing the breaks
of each grid into a single composite. Consider two spatial grids (for example, from an
observational dataset and a model result) whose cells are defined by the outer product
of one-dimensional vectors representing the cell breaks in spherical coordinates,

Gobs := θobs ⊗ ϕobs

Gmod := θmod ⊗ ϕmod

where θ refers to the latitude and ϕ to longitude. Then we may define a composite grid
which consists of the outer product of the union of these two grids’ cell breaks,

Gc := (θobs ∪ θmod)⊗ (ϕobs ∪ ϕmod) .

Once constructed, quantities defined on both Gobs and Gmod may be interpolated to
Gc by nearest neighbor interpolation with zero interpolation error as shown in the
left panel of Figure 2. Once on a equivalent grid, this allows us to represent the
land areas of each source in a common grid and make comparisons. We will
use L to denote the set of cells in a grid G designated as land. We report inte-
grated values on various sets of overlapping areas: the intersection of the two grids
Lobs ∩ Lmod and each complement, Lobs \ Lmod and Lmod \ Lobs. All scores and other
integrated quantities are computed on the intersection of the grids’ land definitions.

Figure 1: Gross primary productivity values from the Fluxnet-MTE data product (left) and
a model, CLM45 (right).

Figure 2: (left) Step functions on two grids interpolated to a composite grid with zero
interpolation error. (right) Differences in representation of land among data sources.

Converting Errors to Scores

In ILAMB, we map measures of relative error ε to a score using a exponential mapping,

S = e−αε

where S is a score on the interval [0, 1] and α is a parameter which can be used to tuned
the mapping of error to score. While we currently take α = 1, other values of α may be
taken to assign meaning to the scores. If you want a relative error of ε̂ to equate to a
score of Ŝ, then

Ŝ = e−αε̂

ln(Ŝ) = −αε̂

α = −ln(Ŝ)

ε̂

Mean State Scores

Within ILAMB, we calculate a non-dimensional score of model performance in
a given dimension of the physics, chemistry, or biology with respect to an ob-
servational dataset. The following table lists a number of scalars and scores
which we use to gauge performance with respect to a given benchmark dataset.
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Benchmark 119
CLM40 128 123 5.06 118 0.802 0.291 1.60 1.34 0.70 0.62 0.77 0.88 0.72
CLM45 109 104 5.33 118 0.802 -0.103 1.48 1.33 0.74 0.66 0.77 0.90 0.74
CLM50 114 109 5.30 118 0.802 -0.00890 1.60 1.35 0.75 0.66 0.78 0.89 0.75

Table 1: Sample table found on ILAMB dataset pages, in this case comparing versions
of CLM to the Fluxnet-MTE gpp product. We show mean values over the time period,
integrated over the different areas as well as other important scalars and scores.

Period Mean The mean value we compute is an integral over space and time,

mean =

∫
Ω

(
1

tf − t0

∫ tf

t0
v(t,x) dt

)
dΩ

where [t0, tf ] is the time interval and Ω is the spatial domain. We integrate both the ob-
servations and model over the intersection and complement of land representations for
complete accounting of the variable.

Bias We compute the bias at each spatial point x as

bias(x) =
1

tf − t0

∫ tf

t0
mod(t,x)− obs(t,x) dt

where obs represents the observational or reference dataset, and mod represents the
model or comparison dataset. The relative error in the bias is then computed with the
following normalization.

εbias(x) =
|bias(x)|

bias(x)−min(bias(x)) + 1× 10−12

The score is then computed using

Sbias =

∫
Ω
e−εbias(x) dΩ

RMSE We compute the RMSE at each spatial point x as

RMSE(x) =

√
1

tf − t0

∫ tf

t0
(mod(t,x)− obs(t,x))2 dt

The relative error in the RMSE is then computed with the following normalization.

εRMSE(x) =
RMSE(x)

RMS(x)

where the RMS is given as

RMS(x) =

√
1

tf − t0

∫ tf

t0
(obs(t,x))2 dt

The score is then computed using

SRMSE =

∫
Ω
e−εRMSE(x) dΩ

Seasonal Cycle We compute a score for the seasonal cycle by first computing a mean
annual cycle across the comparison time period and finding the difference in the annual
timing of the maximum value, represented by θ(x) in terms of days. The a score can be
computed using a cosine function,

Scycle(x) =
1

2

(
1 + cos

(
2πθ(x)

365

))

Spatial Distribution We score the spatial distribution of the time averaged obs and mod
by computing the normalized standard deviation,

σ =
stdev (mod)

stdev (obs)

and the correlation R, and then assigning a score by the following relationship

Sdist =
2(1 + R)

(σ + 1
σ)2

where the main idea is that we penalize when R and σ deviate from a value of 1.

Overall Score The overall score is then a weighted blend of all these scores,

Soverall =
Sbias + 2SRMSE + Scycle + Sdist

1 + 2 + 1 + 1

where the RMSE score is doubly weighted to emphasize its importance.

Relationship Scores

As many models are calibrated using these scalar measures with respect to observa-
tional datasets, we also score the relationships among relevant variables in the model.
For example, in the case of GPP, we also consider its relationship to precipitation, evap-
otranspiration, and temperature. We do this by creating a two-dimensional distribution
based on the observational data and model results (left two panels of Figure 3) as well
as a mean response curve (right panel).

Hellinger Distance The distributions are scored using the so-called Hellinger distance.
If the observational distribution is given as P = (p1, ..., pk) and the model is given as
Q = (q1, ..., qk), then

SH(P,Q) = 1− 1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)

2

RMSE Score The response curves are then scored using a relative measure of the root
mean squared error and the exponential as before. For an observational curve p(x) and
a model curve q(x), then

SRMSE(p, q) = e
−
√∫

(p(x)−q(x))2 dx∫
p(x)2 dx

where as before we have used the exponential to map the relative error in the RMSE.

Figure 3: (left) Observational dataset 2D distribution P , (middle) Model 2D distribution
Q, (right) Observational and model functional relationship p and q.

Overall Score The overall score is then a weighted blend of all these scores,

Soverall =
1

2
(SH + SRMSE)

Summary

The overall scores computed are then combined to form an overall assement of how well
a model performs with respect to a given variable. The ILAMB system then makes a plot
as shown in Figure 4. On the left side of the plot we show the model’s overall score in a
particular variable. However, as these scores tend to be close together, we also provide
the right panel which shows a relative assessment among the models being compared.

Figure 4: (left) the absolute overall score for the given model and variable (right) the
relative performance for the given variable across models.
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