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Rapidly increasing atmospheric carbon dioxide (CO2)
concentrations are altering Earth’s climate.

Perturbation of the carbon cycle could induce feedbacks on
future CO2 concentrations and climate.

Climate-carbon cycle feedbacks are highly uncertain and
potentially large.

Prediction of feedbacks requires knowledge of mechanisms
connecting carbon and nutrients with the climate system.
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Objectives

Objective 1

Reduce the range of uncertainty in climate predictions by
improving the model representation of feedbacks through
comparisons with contemporary observations.

Objective 2

Develop a freely available, user extensible climate-carbon cycle
benchmarking system based upon evaluation criteria and metrics
agreed upon by the international modeling community.
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Feedback Analysis

Friedlingstein et al. (2003, 2006) defined the climate-induced
change in atmospheric CO2 in terms of the change due to
direct addition of CO2,

∆C c
A =

1

1− g
∆Cu

A, (1)

where g is the gain of the climate-carbon cycle feedback.

The effect of changing CO2 on temperature is approximated,

∆T c = α∆C c
A, (2)

where α is the climate sensitivity to CO2 in K ppm−1.

The change in land carbon storage,

∆C c
L = βL∆COc

2 + γL∆T c , (3)

where βL is the sensitivity to the change in CO2, and γL is the
sensitivity to climate change.
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C4MIP Results

Table: Climate-carbon cycle feedback gain, g , along with component
sensitivities calculated at year 2100 for the 11 C4MIP models. From
Friedlingstein et al. (2006, Table 3).

α βL βO γL γO g

Model K ppm−1 GtC ppm−1 GtC ppm−1 GtC K−1 GtC K−1 Gain
HadCM3LC 0.0066 1.3 0.8 −177 −24 0.31
IPSL-CM2C 0.0065 1.6 1.6 −98 −30 0.15
IPSL-CM4-LOOP 0.0072 1.3 1.1 −20 −16 0.06
CSM-1 0.0038 1.1 0.9 −23 −17 0.04
MPI 0.0082 1.4 1.1 −65 −22 0.20
LLNL 0.0068 2.8 0.9 −70 −14 0.10
FRCGC 0.0059 1.2 1.2 −112 −46 0.21
UMD 0.0056 0.2 1.5 −40 −67 0.14
UVic-2.7 0.0063 1.2 1.1 −98 −43 0.20
CLIMBER 0.0053 1.1 0.9 −57 −22 0.10
BERN-CC 0.0061 1.6 1.3 −105 −39 0.13
Average 0.0061 1.35 1.13 −79 −30 0.15
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The 11 C4MIP models varied by a factor of

8 in the gain of the carbon cycle feedback (g),

9 in the climate sensitivity of land storage (γL), and

14 in the concentration sensitivity of land storage (βL).

Spread in the projected atmospheric CO2 increase due to feedbacks (left) and total
land carbon uptake (right) from 11 models participating in the C4MIP Experiment.

From Friedlingstein et al. (2006, Figure 1).

No comparisons were made to observations.
This is the next crucial step for reducing uncertainties!
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Reducing Uncertainties Using Observations

To reduce feedback uncertainties using contemporary observations,

1 there must be a relationship between contemporary variability
and future trends on longer time scales within the model, and

2 it must be possible to constrain contemporary variability in
the model using observations.
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Hypothesis 1 – Seasonal to Annual Time Scale

A stronger climate-carbon cycle feedback will be exhibited by
models with weak contemporary annual cycles of atmospheric CO2

in the Northern Hemisphere extratropics.
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Feedback may be too strong because

Rh too sensitive to temperature,
releasing too much carbon in winter
and mid-summer and canceling out
uptake from NPP; or

GPP not sensitive enough to
temperature, limiting response to
spring warming and reducing
mid-summer maximum.

Contemporary measurements can narrow
the range of model spread and reduce the
uncertainty of γL = ∆CL/∆Ts .
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Temperature Dependence of Heterotrophic Respiration
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Hypothesis 2 – Interannual to Decadal Time Scale

The relationship between El Niño-Southern Oscillation (ENSO)
and observed CO2 anomalies at Mauna Loa may be exploited to
evaluate ocean and terrestrial model responses.
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CO2 Dependence on El Niño-Southern Oscillation (ENSO)

Keeling and Revelle (1985) described a shutdown in upwelling
and biological activity during El Niño years, resulting in a
shutdown of CO2 out-gassing.

Many others have confirmed this response, including Rayner
et al., Feeley et al., Baker et al., and others.

They suggested the deficiency in CO2 flux is more than
compensated for by widespread forest fires and plant deaths
due to drought.

While the net effect of natural processes may once have been
a sink, the opposite effect is observed today.

Opportunistic burning for forest clearing is likely to strengthen
the sensitivity of CO2 to El Niño.
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CO2 Anomaly Growth Rate and Ocean Niño Index
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Mount Pinatubo Eruption

June 1991 on island of
Luzon in the Philippines

Second largest volcanic
eruption of 20th century

Millions of tons of sulfur
dioxide discharged into
atmosphere

Gases and ash reached
34 km high and over
400 km wide

Largest disturbance of
stratosphere since
Krakatau in 1883
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Relation Between CO2 Anomaly Growth Rate and ONI
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Relation Without 1991–1995 (Pinatubo Period)
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Community Earth System Model (CESM) Control Run
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CESM vs. Observations
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Hypothesis 3 – Decadal to Centennial Time Scale

Models with smaller estimates of net terrestrial carbon uptake
during the 19th and 20th centuries will have stronger positive
climate-carbon cycle feedbacks.
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The sensitivity of ecosystem respiration to temperature may be too high
(γL too negative), leading to excessive carbon losses.

The sensitivity of carbon storage to elevated levels of CO2 may be too low
(βL too small), limiting the magnitude of carbon sinks.
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Prior work has shown the utility of
confronting models with
measurements.

The Carbon-Land Model
Intercomparison Project (C-LAMP)
compared two terrestrial biosphere
models with best-available satellite-
and ground-based observations
(Randerson et al., 2009; Hoffman
et al., 2008).

Comparisons of C-LAMP model
results with in situ observations
demonstrate the inability of models
to capture the seasonality of CO2

in the Amazon Basin.
Month of Maximum LAI
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Figure: CLM3-CN model results from C-LAMP comparisons for the
BOREAS North Study Area (left) and LBA Tapajós Forest (right)
sites (Hoffman et al., 2007). Model results are in red and observations
are in blue.
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Conclusions and Future Work

Observations of contemporary variability may be useful for
constraining predictions of future trends over longer time
scales within Earth System Models.

Atmospheric CO2 is an integrator of terrestrial and ocean
fluxes with valuable information for constraining model
behavior over a wide range of time scales (see also Cadule
et al., 2010).

An International Land Model Benchmarking (ILAMB) activity
could use such model evaluation criteria in a freely available
diagnostics package.

ILAMB Meeting will be held at the UC-Irvine in January to
begin community definition of such a system.

Questions?

Forrest M. Hoffman and James T. Randerson Evaluating Climate-Carbon Cycle Feedback Strengths
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