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Research Questions

I Can we provide accurate vegetation maps at high spatial resolutions (5×5 m) using
public datasets and coarse/inaccurate vegetation maps?

I Does multi-sensor fusion (e.g., multi/hyper-spectral) increase performance?

I Can Convolutional Neural Networks (CNNs) provide an approach for learning
vegetation characteristics based on multi-sensor datasets?
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Overview
I Study area based in the

Seward Peninsula, Alaska.

I (a) Bounded by the EO-1
Hyperion footprint.

I (b) Digital Surface Model
(DSM) of the study region.

I (c) Vegetation dataset used
to train our models, based on
the Alaska Existing
Vegetation Type (AKEVT).



Motivation

I Accurate and high-resolution maps of vegetation are critical for projects seeking to
understand the terrestrial ecosystem processes and land-atmosphere interactions in
Arctic ecosystems, such as the U.S. Department of Energy’s Next Generation
Ecosystem Experiment (NGEE) Arctic https://ngee-arctic.ornl.gov/.

I Increasing our confidence in climate projections for high-latitude regions of the
world will require a coordinated set of investigations that target improved process
understanding and model representation of important ecosystem-climate feedbacks.

https://ngee-arctic.ornl.gov/


Satellite Datasets

Dataset Resolution Acquisition Date Bands

EO-1 Hyperion 30 m 24 June 2015 198
Landsat 8 OLI 30 m 17 August 2016 9

ALOS-1 PALSAR 12.5 m 29 August 2007 2
IfSAR DSM 5 m Summer 2012 1

SPOT-5 2.5 m Summer 2009–2012 3

I EO-1 Hyperion hyper-spectral sensor that spans from visible to near infrared (NIR).

I Landsat 8 OLI multi-spectral sensors that spans from visible to short-wave infrared
(SWIR).

I SPOT-5 multi-spectral with NIR, red, and green bands.

I ALOS-1 PALSAR’s L-band synthetic aperture radar (SAR) that yields, all-weather,
day-and-night observation.

I Interferometric synthetic aperture radar (IfSAR) data to generate Digital Surface
Models (DSMs).



Combination of Satellite Datasets

Multi-sensor vegetation classification cases
Case Fusion Combinations of Remote Sensing Datasets # of data layers

D1 EO-1, IfSAR 199
D2 EO-1, Landsat 8 OLI, IfSAR 208
D3 EO-1, ALOS-1 PALSAR, IfSAR 201
D4 EO-1, SPOT-5, IfSAR 202
D5 EO-1, ALOS-1 PALSAR, SPOT-5, IfSAR 204
D6 EO-1, ALOS-1 PALSAR, Landsat 8 OLI, IfSAR 210
D7 EO-1, SPOT-5, Landsat 8 OLI, IfSAR 211
D8 Landsat 8 OLI, IfSAR 10
D9 Landsat 8 OLI, ALOS-1 PALSAR, IfSAR 12
D10 Landsat 8 OLI, SPOT-5, IfSAR 13
D11 ALOS-1 PALSAR, IfSAR 3
D12 ALOS-1 PALSAR, SPOT-5, IfSAR 6
D13 SPOT-5, IfSAR 4
D14 EO-1, Landsat 8 OLI, ALOS-1 PALSAR, SPOT-5, IfSAR 213



Spectral Characteristics – EO-1 Hyperion
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I Averaged spectra for the study region.

I Continuous signature of vegetation types show separability for certain wavelengths.



Spectral Characteristics – Other Datasets
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AW – Alder-Willow Shrub, DL – Dryas/Lichen Dwarf Shrub Tundra, MS – Mixed Shrub-Sedge Tussock Tundra-Bog, NV –
Non-Vegetation, SW – Sedge-Willow-Dryas Tundra, W – Water

I Landsat 8 (L8) bands, B5 (Near Infrared (NIR)), B6 (Shortwave Infrared (SWIR)
1), and B7 (Shortwave Infrared (SWIR) 2) show greatest separability.

I SPOT-5 and DSM also show separability but with high ranges.

I High ranges and commonality could be due to the noisy AKEVT dataset.



Vegetation Dataset

Class Area (km2) Percentage
Mixed Shrub-Sedge Tussock Tundra-Bog 120.75 35.13%
Alder-Willow Shrub 74.33 21.63%
Dryas/Lichen Dwarf Shrub Tundra 20.52 5.97%
Sedge-Willow-Dryas Tundra 116.41 33.87%
Water 6.13 1.78%
Non-Vegetation 5.58 1.62%

I We used the Alaska Existing
Vegetation Type, circa 2000
(AKEVT) to represent the
existing dominant vegetation
species present, or the
non-vegetated land cover.

I Based upon existing field plot
data, Landsat 7 ETM+
spectral data, and
topographic data.

I It can be difficult to
accurately map large areas
based on sparse field plots.



Neural Networks
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I Neural networks are typically organized in layers, made up of a number
of interconnected nodes connected in an acyclic graph, with the
outputs of some neurons can become inputs to other neurons.

I Inspired by neural receptors in the brain.

I Deep learning refers to artificial neural networks that are composed of
many layers (Goodfellow et al., 2016).



Convolutional Neural Networks

I The hidden layers of a Convolutional Neural Networks (CNNs) typically
consist of convolutional layers, pooling layers, fully connected layers
and normalization layers.

I CNNs arranges its neurons in three dimensions (width, height, depth).
In this example the depth would be 3 (Red, Green, Blue channels).

I The architecture of a CNN is designed to take advantage of the
structure of an input image.

Source: http://xrds.acm.org

http://xrds.acm.org


2D CNN Layers

Layer Information
Convolution Convolving a matrix with one single convolution kernel
Pooling Smooths the data and reduces spatial resolution
Loss Layer Objective function, required to compile the model
Activation Defines the output of that node given an input or set of inputs (ReLU, logistic, etc.)
Fully Connected (FC) Layer Full connections to all activations in the previous layer, as seen in regular Neural Networks

Source:http://cs231n.github.io

http://cs231n.github.io


CNN Hyperparameters

I Learning rate – controls how much to update the weight in the
optimization algorithm.

I Number of epochs – number of times the entire training set pass
through the neural network.

I Activation function – introduces non-linearity to the model.

I Number of hidden layers and units – good to add more layers until
the test error no longer improves.

I Dropout – preferable regularization technique to avoid overfitting.

I Structure – number of layers, size of filters, number of feature maps
in convolution layers, etc.



CNN Architectures
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Patch Based Example 

Pixel Based Example 

Output

I Patch based – break
image up into patches
(6×6, 12×12, and
16×16) and estimate the
vegetation type for the
patch.

I Pixel based – output
image will have every
pixel classified (i.e.,
image segmentation).
We break up the images
into patches (16×16,
32×32, and 64×64), for
computational efficiency.



Unsupervised Clustering Vegetation Map (UCVM)

I Hargrove et al. (2006) developed a method, called Mapcurves, for
quantitatively comparing categorical maps that is independent of
differences in resolution, independent of the number of categories in
maps, and independent of the directionality of comparison.

I We first perform PCA and k-means clustering of the combined
datasets from k = 10, 25, and 50.

I We then reclass the k clusters image based on the Goodness of Fit
(GOF) score, which is a unitless measure of spatial overlap between
map categories.

I We call this method the Unsupervised Clustering Vegetation Map
(UCVM).



Training/Validation

I We use 90% of the patches for each patch size (e.g., 12×12) for
training and 10% for validation.

I Two training datasets for building CNN models

1. Alaska Existing Vegetation Type (AKEVT) map labels
2. Unsupervised Clustering Vegetation Map (UCVM)

Example of UCVM method
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(a) Clustering of D14 using k=25. (b) The AKEVT map and (c) the UCVM map,
showing large differences. (d) SPOT-5 false color image.



CNN Networks – Patch Based
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Layer Output Shape Param

Input (None, 12, 12, 200) 800

conv2d (None, 6, 6, 24) 43224

conv2d (None, 3, 3, 36) 7812

conv2d (None, 3, 3, 48) 15600

conv2d (None, 3, 3, 64) 27712

flatten (None, 576) 0

dense (None, 100) 57700

dense (None, 50) 5050

dense (None, 6) 306
Total params: 158,204

I Example using D14 – 200
spectral bands.

I 4 convolutional layers.

I 2 hidden layers (100 and 50,
respectively).

I Increase filter size as we
downsample image.

I Output from patches
corresponds to a vegetation
type.



CNN Networks – Pixel Based
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I Inspired by the U-Net Algorithm (Ronneberger et al., 2015).

I Example of pixel-based architecture for 32×32 pixel patch with 200 bands (D14).

I Constant number of 64 filters throughout the network.

I Constant kernel size of 3×3.

I Pooling size of 2×2, used for downsampling images.

I Upsampling is performed with size of 2×2 to yield a higher resolution.

I Perform filter concatenation based on previous layers.



Results – Patch Based

AKEVT UCVM
6×6 12×12 16×16 6×6 12×12 16×16

D
1 5 m 0.64 0.65 0.63 0.94 0.93 0.91

12.5 m 0.63 0.63 0.59 0.95 0.93 0.87

D
2 5 m 0.66 0.66 0.66 0.94 0.92 0.91

12.5 m 0.65 0.64 0.59 0.95 0.92 0.85

D
3 5 m 0.64 0.64 0.64 0.94 0.93 0.90

12.5 m 0.64 0.62 0.61 0.96 0.92 0.88

D
4 5 m 0.66 0.67 0.66 0.95 0.93 0.91

12.5 m 0.66 0.64 0.61 0.95 0.92 0.87

D
5 5 m 0.67 0.67 0.66 0.95 0.93 0.91

12.5 m 0.67 0.64 0.63 0.95 0.92 0.88

D
6 5 m 0.66 0.67 0.66 0.94 0.92 0.90

12.5 m 0.66 0.64 0.61 0.95 0.92 0.87

D
7 5 m 0.67 0.68 0.67 0.95 0.93 0.91

12.5 m 0.67 0.66 0.59 0.95 0.93 0.86

D
8 5 m 0.63 0.64 0.65 0.78 0.77 0.78

12.5 m 0.64 0.62 0.59 0.82 0.80 0.80

D
9 5 m 0.63 0.64 0.63 0.78 0.77 0.77

12.5 m 0.65 0.63 0.59 0.83 0.82 0.80

D
1

0 5 m 0.66 0.67 0.67 0.80 0.79 0.78
12.5 m 0.67 0.67 0.62 0.83 0.81 0.81

D
1

1 5 m 0.52 0.53 0.53 0.67 0.66 0.67
12.5 m 0.53 0.52 0.52 0.72 0.74 0.73

D
1

2 5 m 0.62 0.63 0.63 0.76 0.76 0.76
12.5 m 0.64 0.64 0.56 0.81 0.80 0.78

D
1

3 5 m 0.62 0.63 0.64 0.76 0.75 0.76
12.5 m 0.64 0.64 0.56 0.81 0.80 0.78

D
1

4 5 m 0.67 0.68 0.67 0.96 0.93 0.91
12.5 m 0.67 0.65 0.57 0.95 0.93 0.86

I Accuracy of patch sizes (i.e., 6×6, 12×12,
and 16×16) at 5 m and 12.5 m resolution
using AKEVT and UCVM maps for
training.

I The CNN models trained using AKEVT
had accuracies ranging from 52% to 68%.

I The hyper-spectral datasets performed the
best with the AKEVT labels, ranging from
59% to 68% accurate, with patch size of
6×6 and 12×12 achieving the highest
scores.

I Higher resolution pixels acheive better
scores for large patch sizes (16×16 patch)
for most datasets.

I UCVM vegetation map increased the
accuracy for all datasets by a large margin.

I The highest scores were achieved for the
hyper-spectral datasets, having 96%
accuracy for D3 (EO-1, ALOS-1 PALSAR,
IfSAR) for the 12.5 m dataset.

I The highest score from the 5 m datasets
was achieved using D14 dataset with a 96%
accuracy.



Results – Patch Based
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Figure: The model accuracy for D14
by varying the epoch to 100 using
the AKEVT for training and patch
size of 6×6.
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Figure: The model accuracy for D14
using the UCVM for training and
varying the epoch to 100 for patch
size of 6×6.

The green line represents the validation set (10% of data) and the blue line represents the
training dataset (90% of data). AKEVT models overfit the data after a short number of
epochs. UCVM models show optimal performance during training and validation.



Results – Pixel Based

AKEVT Mapcurves
16 32 64 16 32 64

D
1 5 m 0.64 0.62 0.61 0.95 0.92 0.89

12.5 m 0.61 0.59 0.61 0.94 0.90 0.86

D
2 5 m 0.66 0.64 0.61 0.94 0.92 0.91

12.5 m 0.62 0.60 0.61 0.94 0.92 0.87

D
3 5 m 0.64 0.63 0.62 0.94 0.93 0.89

12.5 m 0.62 0.60 0.60 0.94 0.90 0.86

D
4 5 m 0.67 0.65 0.63 0.97 0.93 0.89

12.5 m 0.64 0.60 0.62 0.94 0.89 0.86

D
5 5 m 0.67 0.65 0.62 0.97 0.94 0.89

12.5 m 0.64 0.62 0.62 0.95 0.90 0.86

D
6 5 m 0.66 0.65 0.63 0.94 0.92 0.90

12.5 m 0.64 0.60 0.63 0.94 0.91 0.87

D
7 5 m 0.68 0.65 0.62 0.95 0.93 0.91

12.5 m 0.64 0.62 0.62 0.94 0.91 0.86

D
8 5 m 0.64 0.62 0.61 0.76 0.74 0.74

12.5 m 0.61 0.60 0.56 0.80 0.79 0.80

D
9 5 m 0.65 0.65 0.65 0.76 0.75 0.75

12.5 m 0.65 0.62 0.63 0.82 0.79 0.80

D
1

0 5 m 0.68 0.66 0.66 0.78 0.76 0.76
12.5 m 0.65 0.64 0.65 0.83 0.80 0.82

D
1

1 5 m 0.55 0.55 0.56 0.67 0.66 0.68
12.5 m 0.55 0.54 0.55 0.74 0.71 0.74

D
1

2 5 m 0.66 0.65 0.63 0.76 0.75 0.74
12.5 m 0.64 0.63 0.63 0.81 0.79 0.81

D
1

3 5 m 0.65 0.65 0.64 0.76 0.73 0.75
12.5 m 0.65 0.62 0.63 0.81 0.78 0.81

D
1

4 5 m 0.68 0.66 0.64 0.96 0.93 0.91
12.5 m 0.64 0.62 0.63 0.94 0.90 0.87

I AKEVT labels had accuracies ranging from 54%
to 68%.

I D11 (ALOS-1 PALSAR, IfSAR) performed the
worst with the AKEVT labels, similar to the
patch-level CNN architecture.

I D7 (EO-1, SPOT-5, Landsat 8 OLI, IfSAR), D10
(Landsat 8 OLI, SPOT- 5, IfSAR), and D14
(EO-1, Landsat 8 OLI, ALOS-1 PALSAR,
SPOT-5, IfSAR) performed the best with the
AKEVT at 5 m and 16×16 patch size.

I Increasing the resolution and having a patch size
of 16×16 worked best for our segmentation
architecture.

I The UCVM vegetation map increased the
accuracy for all datasets by a large margin.

I Highest scores were achieved from the
hyper-spectral datasets, having 97% accuracy for
D4 (EO-1, SPOT-5, IfSAR) and D5 (EO-1,
ALOS-1 PALSAR, SPOT-5, IfSAR) for the 5 m
dataset.

I Highest score from the 12.5 m datasets were the
hyper-spectral datasets (D1–D7 and D14) with a
94%-95% accuracy.

I The Landsat, SAR, and SPOT datasets (D8, D9,
D10, D12, and D13) had accuracies from 0.77%
to 0.83%.



Results – Pixel Based
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Figure: Model accuracy for D5
varying the epoch to 100 using the
AKEVT for training and patch size
of 16×16.
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Figure: Model accuracy for D5
varying the epoch to 100 using the
UCVM for training and patch size of
16×16.

The green line represents the validation set (10% of data) and the blue line represents the
training dataset (90% of data). AKEVT models overfit the data after a short number of
epochs. UCVM models show optimal performance during training and validation.



Results – Field Based Validation

0 100200 mVegetation Classes

Non-Vegetation
Alder-Willow Shrub
Mixed Shrub-Sedge Tussock Tundra-Bog
Dryas/Lichen Dwarf Shrub Tundra
Sedge-Willow-Dryas Tundra

CNN Patch Based

CNN Patch Based Plot
Number

Field
Obs.

D7 CNN
UCVM

D7 CNN
AKEVT

AKEVT

1 MS MS MS MS
2 MS MS AW MS
3 AW AW AW AW
4 DL SW DL DL
5 AW AW AW AW
6 MS MS MS MS
7 MS MS SW SW
8 AW AW AW SW
9 DL AW AW SW
10 AW AW AW SW
11 AW AW AW AW
12 DL AW MS DL
13 DL AW AW AW
14 MS MS MS MS
15 MS MS MS SW
16 MS MS MS MS
17 MS MS MS MS
18 MS AW AW AW
19 MS MS SW MS
20 AW AW AW SW
21 AW AW AW SW
22 AW AW AW AW
23 DL MS MS SW
24 DL MS MS SW
25 DL MS DL DL
26 AW AW AW AW
27 AW AW AW MS
28 DL SW DL DL
29 DL SW DL DL
30 DL SW DL AW
Accuracy 0.63 0.70 0.53



Conclusions

I Both CNN model approaches (pixel and patch based) had similar
accuracy metrics for all cases, with AKEVT CNN models ranging from
∼52% – ∼68% and UCVM CNN models ranging from ∼66% – ∼97%.

I Hyper-spectral datasets (D1–D7 and D14) performed the best, with an
average of ∼95% accuracy.

I The UCVM dataset helped improve the accuracy scores compared to
using the AKEVT map alone.

I D3 (EO-1, ALOS-1 PALSAR, IfSAR), D4 (EO-1, SPOT-5, IfSAR), and
D5 (EO-1, ALOS-1 PALSAR, SPOT-5, IfSAR) are the optimal
datasets.

I Future steps are to:
I Improve CNN architectures that utilize hyper-spectral features.
I Incorporate vegetation datasets into Earth system models (ESMs).



Deep neural network based wildfire mapping
Wildfires are the dominant disturbance impacting many regions in Alaska and are
expected to intensify due to climate change. Accurate tracking and quantification of
wildfires are important for climate modeling and ecological studies in this region.

MODIS datasets processed using Google Earth
Engine was used to develop models trained using
MTBS fire data.
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MODIS Images

Deep Neural Network

Wildfire Map

CNN with Validation Strategy algorithm was
applied to sparse unbalanced dataset.

CNN based model demonstrated good accuracy
for mapping wildfires
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