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Introduction

• Volumes of climate and other Earth science data are rapidly growing as model resolu-
tions increase and observing networks and satellites collect data at higher spatial and
temporal resolutions.

• New data analytics approaches are required on high performance computing platforms
to synthesize and analyze these data.

• We examine some of these approaches and demonstrate their utility for climate,
remotely-sensed vegetation phenology, and LiDAR data sets.

• Described here is a potential co-design effort to
– develop and extract key analytics methods useful in climate research,
– optimize these methods for existing Leadership Computing platforms using large cli-

mate data sets, and
– develop benchmark problems for co-design of future data analytics platforms.

Accelerated k -means Clustering

• We have two implementations of accelerated k -means clustering, following two parallel
programming models
– A master-worker (MW) model: Central master assigns “aliquots” of work to workers.

This model facilitates dynamic load balancing but has memory and performance
scalability limits because of the single central process.

– Fully distributed (FD): All processes use a static distribution of work. This model is
very scalable, but has no dynamic load balancing.

• We “accelerate” the k -means process using two techniques described by Phillips
(doi:10.1109/IGARSS.2002.1026202):
– Use the triangle inequality to eliminate unnecessary point-to-centroid distance com-

putations based on the previous cluster assignments and the new inter-centroid dis-
tances.

– Reduce evaluation overhead by sorting inter-centroid distances so that new candi-
date centroids cj are evaluated in order of their distance from the former centroid
ci. Once the critical distance 2d(p, ci) is surpassed, no additional evaluations are
needed, as the nearest centroid is known from a previous evaluation.

d(i, j) ≤ d(p, i) + d(p, j)
d(i, j)− d(p, i) ≤ d(p, j)
if d(i, j) ≥ 2d(p, i) :

d(p, j) ≥ d(p, i)
without calculating the distance d(p, j)

Figure 1: The triangle inequality is used to eliminate unnecessary distance calculations.

• We also improve cluster quality by moving or “warping” clusters that become empty to
locations in data space where points that are farthest from their current cluster cen-
troids reside.

Baseline Performance Characterization
We collected performance data with our clustering code for a baseline scenario us-
ing the LiDAR dataset for the Great Smoky Mountains National Park (GSMNP),
’tnnc gsmnp vertical profiles’ (1.7 GB).
• We utilized the Oxbow toolkit and Performance Analytics Data Store (PADS) infras-
tructure for this application characterization.

• This kind of data is invaluable to pursue effective co-design through objective assess-
ment and aids in adaptation to emerging architectural features.

Computational Profiling

The computational profile of application execution is described by the mix of executed
micro-operations. Figure 2 shows the instruction mix.
• Obtained by decoding the x86 assembler instructions and grouping them into coarser
categories like memory, control, floating point and integer arithmetic.

• Obtained using a tool based on Intel’s PIN, a dynamic binary instrumentation tool.
• The data is useful to ascertain if there is potential for improved performance. For in-
stance, we identified an opportunity for improved performance by better utilization of
floating point single-instruction-multiple-data (SIMD) operations (see Improving com-
putational intensity discussion of BLAS level 2-3 formulation below).

Figure 2: The instruction mix for the clustering code running on 16 processors on a
1.7 GB dataset. The blue bar corresponds to the master process that primarily handles
communication, explaining the lack of any floating point operations. The orange bar rep-
resents worker processes that exclusively handle the computation, as reflected in floating
point operations.

Communication Behavior

We used a communication profiling tool (mpiP) to capture the volume of data transferred
between MPI ranks and visualized the results to understand the communication topol-
ogy (Figure 3). It is clearly evident that we are using a master-worker protocol because
all communication is point-to-point between the first process and all other processes.

Figure 3: Communication volume for clustering code using 16 MPI processes. The axes
show the ranks of the sender and receiver process respectively. The box plot on the right
shows the distribution of MPI message sizes. Note: the faint yellow box on the upper
right of the plot is an artifact of the profiling tool.

Memory Behavior

We instrumented the kernel of our application using PAPI hardware counters for obtaining
detailed memory performance data. The kernel achieves a read bandwidth of 122 MB/s
and a write bandwidth of 58.9 MB/s. These results are for the baseline code with no
in-memory data rearrangement to optimize memory performance.

Parallel Performance

Accelerated k -means code

• In 2011, we used ∼1024 AMD Opteron cores on a machine like Jaguar, the Cray XT5
at ORNL, for our analyses.

• In 2015, we can do larger analyses on a single compute node of Intel’s Endeavor
cluster with Intel® Xeon® E7-8890 v3 (“Haswell-EX”) processors.
– AVX2 instruction set: 256-bit (8 single precision floats) vector registers with dual-

issue fused multiply-add
– Four 18 core (36 thread) CPUs; over 500 GB DRAM
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Figure 4: Times to cluster different versions of the 2000–2009 ForWarn phenology data
set on (a) 1024 cores of the Jaguar Cray XT5, ca. 2011 at ORNL and (b) a single 72-core
“Haswell-EX” node on Intel’s Endeavor cluster. The data set used on Jaguar is the 16
day product, while the one on Endeavor is the 8 day product and is therefore twice as
large (251 GB in single precision).

• With acceleration, an equal distribution of observation vectors among processes does
not guarantee load balance. Figure 4b illustrates the benefit of using smaller aliquots
to enable dynamic load balancing in the MW clustering code.

Improving computational intensity

• We have recently realized that it is possible to achieve greater computational inten-
sity of the observation–centroid distance calculations by expressing the calculation in
matrix form:
– For observation vector xi and centroid vector zj, the squared distance between them

is Dij =
∥∥xi − zj

∥∥2.
– Via binomial expansion, Dij = ‖xi‖2 +

∥∥zj∥∥2 − 2xi · zj
– The matrix of squared distances can thus be expressed as D = x1ᵀ + 1zᵀ − 2XᵀZ,

where X and Z are matrices of observations and centroids, respectively, stored in
columns, x and z are vectors of the sum of squares of the columns of X and Z, and
1 is a vector of all 1s.

• The above expression for D can be calculated in terms of a level-3 BLAS operation
(xGEMM), followed by two rank-one updates (xGER, a level-2 operation).

• Level 2 and 3 BLAS operations admit very computationally efficient implementations,
and libraries such as Intel® MKL provide highly optimized versions.

• We have experimented with using the above, matrix formulation for the distance calcu-
lations and have found that it is dramatically faster than the straightforward loop over
vector distance calculations when many distance comparisons must be made.

• For architectures that employ a high level of fine-grained parallelism with wide SIMD
lanes, increasing the computation intensity has an especially high payoff in terms of
improved performance. See Figure 6.

• Using the matrix formulation for distance comparisons in early k -means iterations is
straightforward; a more complicated approach we will explore is using the matrix for-
mulation in combination with the acceleration techniques described above, in which
only a subset of observation–centroid distances are calculated.
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Figure 5: Timings for clustering the GSMNP LiDAR dataset using a single worker pro-
cess on an Intel® Core™ i7-5650U CPU operating at 2.20 GHz. (a) Total timings for
k-means clustering using the acceleration techniques; doing all distance comparisons
but forming the distance matrix using BLAS operations provided by Intel® MKL; and do-
ing all distance comparisons without the benefit of the matrix formulation and BLAS. (b)
Timings per iteration for k=100 when using the acceleration technique compared to the
matrix formulation for the distance calculations. In early iterations, where many distance
comparisons are required, the matrix formulation offers better performance.
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Figure 6: A comparison of the matrix formulation and the “acceleration”-based ap-
proach on a recent high-end Intel® Xeon® server-based machine (dual-socket E5-2697
v4 “Broadwell-EP”, referred to as “2S BDW-EP”) and a second-generation Intel® Xeon
Phi™ 7250 node (68 core “Knights Landing”, referred to as “KNL”), clustering the GSMNP
LiDAR dataset. The original “accelerated” formulation used by the code operates vector-
by-vector and does not fully make use of the wide SIMD units on KNL. When employing
the matrix formulation, however, KNL is so fast that, even at high values of k (2000 in this
case), relying entirely on it without switching to the accelerated version gives the fastest
performance out of all the cases, even though this means doing far more distance calcu-
lations than in the accelerated case. On the 2D BDW-EP system, the matrix formulation
also results in much better use of the SIMD lanes (which have half the width of the KNL
ones), but not so much as to make relying entirely on the matrix formulation most effec-
tive. (Note that relying on a vector-by-vector approach without the acceleration technique
is so slow that we do not present timings for this case.)

Future Work

• Optimize process and thread mapping in hybrid MPI-OpenMP mode
• Co-design for deep memory hierarchies
Emerging supercomputing platforms are expected to have deeper memory levels and
more diversity in memory technologies (volatile and non-volatile).
– Identify and map suitable data structures in high bandwidth memory (e.g., Multi-

channel DRAM in Xeon Phi™ KNL).
– Develop techniques to effectively utilize non-volatile memory in contrast to traditional

memory (e.g., Burst-buffers).
– Understand trade-offs of various clustering modes (e.g., sub-NUMA clustering) for

Xeon Phi™.

Conclusions

• Data analytics methods like those described above are increasingly important for
climate-related studies and the growing body of Earth science data.

• We have shown that choices of optimal solution method are sensitive to memory
bandwidth, cache sizes, and core clock speeds in addition to problem size and other
problem-specific parameters.

• Standalone implementations of key analytics algorithms and benchmark problems
could inform the design of future Leadership Computing platforms and software de-
sign necessary to meet the needs of climate researchers.
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