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Model–Data Experimentation Strategy



Quantitative Sampling Network Design

I Resource and logistical constraints limit the frequency and extent of
observations, necessitating the development of a systematic
sampling strategy that objectively represents environmental
variability at desired spatial scales.

I Required is a methodology that provides a quantitative framework
for informing site selection and determining the representativeness
of measurements.

I Multivariate spatiotemporal clustering (MSTC) was applied at the
landscape scale (4 km× 4 km) globally to demonstrate its utility for
representativeness and scaling.

I Method recently used to quantify representativeness of candidate
sampling sites for the State of Alaska (Hoffman et al., 2013).

I An extension of the method applied by Hargrove and Hoffman for
design of National Science Foundation’s (NSF’s) National
Ecological Observatory Network (NEON) domains (Schimel et al.,
2007; Keller et al., 2008).



Multivariate Spatiotemporal Clustering (MSTC)

(Hargrove and Hoffman, 2004)



17 Data Layers

Variable Description Units

Bioclimatic Variables
Precipitation during the hottest quarter mm
Precipitation during the coldest quarter mm
Precipitation during the driest quarter mm
Precipitation during the wettest quarter mm
Ratio of precipitation to potential evapotranspiration unitless
Temperature during the coldest quarter ◦C
Temperature during the hottest quarter ◦C
Day/night diurnal temperature difference ◦C
Sum of monthly Tavg where Tavg ≥ 5◦C ◦C
Integer number of consecutive months where Tavg ≥ 5◦C unitless

Edaphic Variables
Available water holding capacity of soil unitless
Bulk density of soil g/cm3

Carbon content of soil g/cm2

Nitrogen content of soil g/cm2

Topographic Variables
Compound topographic index (relative wetness) unitless
Solar interception kW/m2

Elevation m

(Potter and Hargrove, 2013)



10 Global Ecoregions, Random Colors

The 10 most different ecoregions globally are shown in random
colors. Notice that areas with similar environmental characteristics
are colored the same no matter where they occur on Earth.



25 Global Ecoregions, Random Colors

The 25 most different ecoregions globally are shown in random
colors. Notice that areas with similar environmental characteristics
are colored the same no matter where they occur on Earth.



50 Global Ecoregions, Random Colors

The 50 most different ecoregions globally are shown in random
colors. Notice that areas with similar environmental characteristics
are colored the same no matter where they occur on Earth.



Global Forest Site Representativeness

I Representativeness analysis uses the standardized
n-dimensional data space formed from all 17 input data layers.

I In this data space, the Euclidean distance between a sampling
location (like Manaus, Brazil) and every other point is
calculated.

I These data space distances are then used to generate
grayscale maps showing the similarity, or lack thereof, of every
location to the sampling location.

I In the subsequent maps, white areas are well represented by
the sampling location or network, while dark and black areas
as poorly represented by the sampling location or network.

I This analysis assumes that the climate surrogates maintain
their predictive power and that no significant biological
adaptation occurs in the future.



Site Representativeness: CTFS-ForestGEO, Mpala, Kenya

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location shown in red.



ForestGEO Network Global Representativeness

(Anderson-Teixeira et al., 2015)

Map illustrating ForestGEO network representation of 17 bioclimatic,
edaphic, and topographic conditions globally. Light-colored regions are
well represented and dark-colored regions are poorly represented by the
ForestGEO sampling network. Stippling covers non-forest areas.



Global Forest Site Constituency

I For a fixed network of sampling sites, constituency analysis
yields the spatial area represented best by any given site based
on Euclidean distance in data space.

I For a given constituency, we can calculate a mean and
standard deviation site representativeness.

I Thus,
I a site with a large constituency provides broad spatial

coverage;
I a site with high mean representativeness (low dissimilarity)

is a strong archetype of its constituency; and
I a site with a large standard deviation representativeness

provides broad data space coverage and is, therefore, the best
(possibly poor) representative of a diverse constituency.

I These three metrics are (mostly) independent measures of
network optimality.



Tropical Forest Site Constituency

For insights into tropical forest network design, we perfomed
representativeness and constituency analysis using the 36
CTFS-ForestGEO tropical sites to compute network a)
representativeness, b) representativeness for tropical forests, and c)
constituency for tropical forests.

a)

b)

c)













Network Representativeness of 770 Fluxnet Sites

(Kumar et al., 2016)

Red triangles indicate locations of all 770 Fluxnet sites. Light
regions are well represented by this collection of sites, while dark
regions are poorly represented.



Network Representativeness of 164 FLUXNET2015 Sites

(Kumar et al., 2016)

Blue circles indicate locations and data years of the 164 sites in the
FLUXNET2015 data set. Light regions are well represented by this
collection of sites, while dark regions are poorly represented.



Network Representativeness Difference for Fluxnet Sites

(Kumar et al., 2016)

Map shows the spatial distribution of representativeness lost by the
unavailability of data for the 606 sites not included in the
FLUXNET2015 data set.



Upscaled Integrated Annual Mean GPP

2000 2006

2011 2014
(Kumar et al., 2016)

Maps show the spatial distribution of the annual mean GPP
(g C m−2 d−1) upscaled using clustering and inverse distance
weighting (IDW).



Comparison of FLUXNET2015 IDW with FLUXNET-MTE

2000 2002

2004 2008
(Kumar et al., 2016)

Maps show the difference between the IDW-upscaled GPP with
FLUXNET-MTE. IDW estimated higher GPP in red regions and
lower GPP in blue regions than FLUXNET-MTE.



Zonal mean comparison with FLUXNET-MTE

IDW MTE

(Kumar et al., 2016)

The IDW scaled GPP has much greater zonal interannual
variability than MTE.



Summary

I Multivariate Spatiotemporal Clustering (MSTC) provides a
quantitative framework for stratifying sampling domains, informing
site selection, and determining representativeness of measurements.

I Representativeness Analysis and Constituency Analysis provide
a systematic approach for optimizing site selection and up-scaling
point measurements to larger domains.

I Methodology is independent of resolution and surrogate data, thus
can be applied from site/plot scale to landscape/global scale with
site measurements, remote sensing, and models.

I Paper describing analysis method applied for State of Alaska:
Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove (2013),
Representativeness-based sampling network design for the State of Alaska,
Landscape Ecol., 28(8):1567–1586, doi:10.1007/s10980-013-9902-0.

I Paper describing FLUXNET2015 GPP scaling in discussion:
Kumar, J., F. M. Hoffman, W. W. Hargrove, and N. Collier (2016),
Understanding the representativeness of FLUXNET for upscaling carbon
flux from eddy covariance measurements, Earth Syst. Sci. Data Discuss.,
doi:10.5194/essd-2016-36.

http://dx.doi.org/10.1007/s10980-013-9902-0
http://dx.doi.org/10.5194/essd-2016-36
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