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Anthromes - Anthropogenic Biomes - Human Biomes

Originally conceived by Ellis and Ramankutty (Front. Ecol. Environ., 2008) in a
paper titled “Putting People in the Map: Anthropogenic Biomes of the World"”
Designed to recognize the terrestrial biosphere in its contemporary,
human-altered and -managed form

Urban and agriculture are the most obvious, but there are a hierarchy of
human settlements (high- to low-density), villages dominated by a variety of
agricultural practices, various croplands and rangelands, as well as populated
and remote forests and unpopulated forests and barren lands

Ellis and Ramankutty aimed to develop a framework for inclusion of
human-created mosaics with natural systems, and the accompanying ecological
interactions, directly into global ecosystem models

Representation of prognostic human interactions remains woefully inadequate
even in today’s sophisticated Earth system models



Introduction

Terrestrial ecosystems (vegetation and soils)
represent a large natural sink of carbon

This land carbon sink may be growing due to
CO,-fertilization and land use/management change

Satellite remote sensing offers the ability to estimate Sentinel-2 monitors vegetation, soil, and water cover
ecosystem carbon state and dynamics at multiple M
spatial and temporal scales

Earth observations are increasing in spatial
resolution, temporal frequency, and spectral range
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Exascale computing enables rapid assimilation,
simulation, and analysis of Earth system data

Combined, these technologies can better constrain  Frontier at Oak Ridge National Laboratory is the #1 fastest

: supercomputer on the TOP500 List and the first
the carbon Cyd eand ca th re human influences supercomputer to break the exaflop barrier (Nov 14, 2022).



https://top500.org/

Vegetation Live Biomass and Its Changes (2000-2019)

Left: (A) Spatial
distribution of mean
global vegetation
carbon density. (B)
Spatial distribution of
coefficient of variation
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Vegetation Indices

Vegetation indices (e.g., NDVI, EVI,
NDRE) provide useful constraints on
seasonal phenology and trends in
vegetation change due to disturbance
and land use and climate change
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MAKING MAPS WITH THE STONE SOUPERCOMPUTER
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u t Iva r I ate e 0 ra I c u ste rI n TO DRAW A MAP of the ecoregions in the continental U.S.,the Stone  thecellsinathi i ional d p d group them into four
SouperComputer compared 25 envi | isticsof 7.8 gions. The f gion map divides the U.S. into recognizable
ion on

ilometer cells. As a simple example, consider  zones (illustration B); a map dividing the country into 1,000 eco-

thecl. nine cells based on only three characteristics regions provides far more detail (C). Another approach is to
(temperature, rainfall and organic matter in the soil). posite ch istics wi i
lllustration A shows how the PC cluster would plot TEMPERRTURE levels of red, green and blue (D).

e Ecoregions provide a useful framework for
mapping biomes and were traditionally created
by experts

e Our approach has been to objectively create
ecoregions using continuous continental-scale
data and clustering

e We developed a highly scalable k-means cluster
analysis code that uses distributed memory
parallelism

e Originally developed on a 486/Pentium cluster,
the code now runs on the largest hybrid
CPU/GPU architectures on Earth

ORGANIC
MATTER

Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The Do-It-Yourselfi
Supercomputer, Sci. Am., 265(2):72-79,
https://www.scientificamerican.com/article/the-do-it-yourself-superc/ e e e
. Copyright 2001 Scientific American, Inc.
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EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION

Eos, Vol. 84, No. 48, 2 December 2003
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PAGES 529-544

New Analysis Reveals
Representativeness
of the AmeriFlux Network

PAGES 529,535

The AmeriFlux network of eddy flux covari-
ance towers was established to quantify varia-
tion in carbon dioxide and water vapor exchange
between terrestrial ecosystems and the atmos-

BY WiLLiam W, HARGROVE, FORREST M. HOFFMAN,
AND BeVERLY E. Law

phere,and to understand the underlying mech-
anisms responsible for observed fluxes and
carbon pools.The network is primarily funded
by the U.S.Department of Energy, NASA, the
National Oceanic and Atmospheric Adminis-
tration, and the National Science Foundation.
Similar regional networks elsewhere in the

synthesis activities across larger geographic
areas [Baldocchi et al.,2001; Law et al.,2002]
The existing AmeriFlux network will also
form a backbone of “Tier 4” intensive measure-
ment sites as one component of a fourtiered
carbon observation network within the North
American Carbon Program (NACP).The NACP
seeks to provide long-term, mechanistically
detailed,spatially resolved carbon fluxes across
North America [Wofsy and Harriss, 2002]. For
both of these roles, the AmeriFlux network
should be ecologically representative of the
environments contained within the geographic
boundaries of the program. A new ecoregion-
scale analysis of the existing AmeriFlux net-
work reveals that, while central continental

Id—for example, C , AsiaFlux,
OzFlux, and Fluxnet Canada—participate in

are well
flux towers are needed to represent environmental

Fig. 1.The representativeness of an existing spatial array of sample locations or study sites—for example, the AmeriFlux network of carbon dioxide
eddy flux covariance towers—can be mapped relative (o a set of quantitative ecoregions, suggesting locations for additional samples or sites.
Distance in data space to the closest ecoregion containing a site quantifies how well an existing network represents each ecoregion in the map.
Environments in darker ecoregions are poorly represented by this network

Network Representativeness

e The n-dimensional space formed by the
data layers offers a natural framework for
estimating representativeness of
individual sampling sites

e The Euclidean distance between individual
sites in data space is a metric of similarity
or dissimilarity

e Representativeness across multiple
sampling sites can be combined to
produce a map of network
representativeness

Hargrove, W. W., and F. M. Hoffman (2003), New Analysis Reveals
Representativeness of the AmeriFlux Network, Eos Trans. AGU,

84(48):529, 535, doi:10.1029/2003E0480001.
TGS
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4 K.J. ANDERSON-TEIXEIRA et al.

Fig. 1 Map of the CTFS-ForestGEO network illustrating its representation of bioclimatic, edaphic, and topographic conditions globally.
Site numbers correspond to ID# in Table 2. Shading indicates how well the network of sites represents the suite of environmental fac-
tors included in the analysis; light-colored areas are well-represented by the network, while dark colored areas are poorly represented.
Stippling covers nonforest areas. The analysis is described in Appendix S1.

Table 1 Attributes of a CTFS-ForestGEO census

Attribute

Utility

Very large plot size

Includes every fre di

Resolve community and population dynamics of highly diverse forests with many
rare species with sufficient sample sizes (Losos & Leigh, 2004; Condit ef al., 2006);
quantify spatial patterns at multiple scales (Condit ef al., 2000; Wiegand et al., 2007a,b;
Detto & Muller-Landau, 2013; Lutz et al., 2013); characterize gap dynamics
(Feeley et al., 2007b); calibrate and validate remote sensing and models, particularly
those wn]\ large spatial grain (Mascaro et al., 2011; Réjou-Méchain et al., 2014)

woody stem >1 cm DBH
All individuals identified
to species

Diameter measured on

all stems

Mapping of all stems and

fine-scale topography

Census typically repeated
every 5 years

C the abundance and diversity of understory as well as canopy trees; quantify
the demography of juveniles (Condit, 2000; Muller-Landau et al., 2006a,b).
Characterize patterns of diversity, species-area, and abundance distributions
(Hubbell, 1979, 2001; He & Legendre, 2002; Condit et al., 2005; John et al., 2007;
Shen et al., 2009; He & Hubbell, 2011; Wang et al., 2011; Cheng et al., 2012); test theories
of competition and coexistence (Brown et al., 2013); describe poorly known plant species
(Gereau & Kenfack, 2000; Davies, 2001; Davies et al., 2001; Sonké et al., 2002;
Kenfack et al., 2004, 2006)
Characterize size-abundance distributions (Muller-Landau et al., 2006b; Lai et al., 2013;
Lutzet al., 2013); combine with allometries to estimate whole-ecosystem properties
such as biomass (Chave et al., 2008; Valencia et al., 2009; Lin et al., 2012; Ngoet al., 2013;
Muller-Landau et al., 2014)
Characterize the spatial pattern of populations (Condit, 2000); conduct spatially explicit
analyses of neighborhood influences (Condit et al., 1992; Hubbell et al., 2001;
Uriarte et al., 2004, 2005; Riiger et al., 2011, 2012; Lutz et al., 2014); characterize microhabitat
specificity and controls on demography, biomass, etc. (Harms ef al., 2001; Valencia et al., 2004;
Chuyong et al., 2011; align on the ground and remote sensing measurements (Asner et al., 2011;
Mascaro et al., 2011).
Characterize demographic rates and changes therein (Russo ef al., 2005; Muller-
Landau et al., 2006a,b; Feeley et nl 2007a; Lai et al., 2013; Stephenson et al., 2014);
1 ize changes in ition (Losos & Leigh, 2004; Chave et al., 2008;
Feeley et al., 2011; Swenson et al., 2012; Chlsho]m et al., 2014); characterize changes in
biomass or productivity (Chave et al., 2008; Banin et al., 2014; Muller-Landau et al., 2014)

©2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12712

Optimizing Sampling Networks

e The CTFS-ForestGEO global forest monitoring
network is aimed at characterizing forest
responses to global change

e The figure at left shows the global

representativeness of the CTFS-ForestGEO
sites in 2014

e Non-forested areas are masked with
hatching, and as expected, they are
consistently darker than the forested
regions, which are represented to varying
degrees by the monitoring sites

Anderson-Teixeira, K. J., et al. (2015), CTFS-ForestGEO: A Worldwide Network
Monitoring Forests in an Era of Global Change, Glob. Change Biol.,
21(2):528-549, doi:10.1111/gcb.12712.
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Representativeness for Alaska

Data Layers

Table: 37 characteristics averaged for the present (2000-2009) and the future (2090-2099).

Description Number/Name Units Source
Monthly mean air temperature 12 °C GCM
Monthly mean precipitation 12 mm GCM
mean day of year GCM

Dy i freges standard deviation days
mean day of year GCM

Lay ol o standard deviation days
Leneth of . mean days GCM

CngEh of growing season standard deviation days
Maximum active layer thickness 1 m GIPL

Warming effect of snow

Mean annual ground temperature at bottom
of active layer

Mean annual ground surface temperature
Thermal offset

Limnicity

Elevation

1

— = e

°C
€
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°C
%

m

GIPL
GIPL

GIPL

GIPL

NHD
SRTM

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove (2013),
Representativeness-Based Sampling Network Design for the State of Alaska,
Landscape Ecol., 28(8):1567-1586, doi:10.1007/s10980-013-9902-0.

Landscape Ecol (2013) 28:1567-1586
DOI 10.1007/510980-013-9902-0
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Abstract Resource and logistical constraints limit
the frequency and extent of environmental observa-
tions, particularly in the Arctic, necessitating the
development of a systematic sampling strategy to
maximize coverage and objectively represent envi-
ronmental variability at desired scales. A quantitative
methodology for stratifying sampling domains,
informing site selection, and determining the repre-
sentativeness of measurement sites and networks is
described here. Multivariate spatiotemporal clustering
was applied to down-scaled general circulation model
results and data for the State of Alaska at 4 km?
resolution to define multiple sets of ecoregions across
two decadal time periods. Maps of ecoregions for the
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present (2000-2009) and future (2090-2099) were
produced, showing how combinations of 37 charac-
teristics are distributed and how they may shift in the
future. Representative sampling locations are identi-
fied on present and future ecoregion maps. A repre-
sentativeness  metric was  developed, and
representativeness maps for eight candidate sampling
locations were produced. This metric was used to
characterize the environmental similarity of each site.
This analysis provides model-inspired insights into
optimal sampling strategies, offers a framework for
up-scaling measurements, and provides a down-scal-
ing approach for integration of models and measure-
ments. These techniques can be applied at different
spatial and temporal scales to meet the needs of
individual measurement campaigns.

Keywords Ecoregions - Representativeness -
Network design - Cluster analysis - Alaska -
Permafrost

Introduction

The Arctic contains vast amounts of frozen water in
the form of sea ice, snow, glaciers, and permafrost.
Extended areas of permafrost in the Arctic contain soil
organic carbon that is equivalent to twice the size of
the atmospheric carbon pool, and this large stabilized

) Springer
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10 Alaska Ecoregions, Present and Future

(Hoffman et al., 2013)

1000 km

1000 km

2000-2009 2090-2099

e Since the random colors are the same in both maps, a change in color represents an
environmental change between the present and the future.

e At this level of division, the conditions in the large boreal forest become compressed onto the
Brooks Range and the conditions on the Seward Peninsula “migrate” to the North Slope.




20 Alaska Ecoregions, Present and Future

(Hoffman et al., 2013)
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1000 km

2000-2009 2090-2099

e Since the random colors are the same in both maps, a change in color represents an
environmental change between the present and the future.

e At this level of division, the two primary regions of the Seward Peninsula and that of the
northern boreal forest replace the two regions on the North Slope almost entirely.




Sampling Network Design
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Triple-Network Global Representativeness

NSF's NEON Sampling Domains

Gridded data from satellite and
airborne remote sensing, models, and
synthesis products can be combined to
design optimal sampling networks and
understand representativeness as it
evolves through time
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RAINFOR

(Maddalena et al., in prep.)




50 Phenoregions for year
2012 (Random Colors)

250m MODIS NDVI
Every 8 days (46 images/year)
Clustered from year 2000 to present
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Earthinsights

day of year

50 Phenoregion Prototypes
(Random Colors)

(Hargrove et al., in prep.)




50 Phenoregions Persistence
and
50 Phenoregions Max Mode
(Similarity Colors)
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2 r z Principal Components
g |— " Analysis

PC1 ~ Evergreen

_ PC2 ~ Deciduous

" PC3 ~ Dry Deciduous
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Month of Year

(Hargrove et al., in prep.)




GSMNP: Spatial distribution of the 30 vege’ro e’
Clusters across the national park a, AT

Extracted canopy height and structure from
airborne LiDAR

10 km
I

Earthinsights (Kumar et al., in prep.)



GSMNP: 30 representative vertical structures
cluster centroids) identified

tall forests with low
understory vegetation

|

Height (m)

forests with slightly lower
mean height with dense
understory vegetation

low height grasslands and
heath balds that are small
in area but distinct
landscape type

Earthinsights
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Height (m)
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* (Kumar et al., in prep.)




Global Fire Regimes

Regions that exhibit similar fire seasonality globally
From MODIS “Hotspots” at 1 km resolution from 2002-2018

Earthinsights (Norman et al., submitted)




Vegetation Distribution at Barrow Environmental Observatory

Phenology Representativeness

v

July 26, 2010 Representativeness

/!

Representativeness map for vegetation
sampling points in sites A, B, C, and D with
phenology (left) and without (right) from
WorldView2 multispectral imagery for the
year 2010 and LiDAR data

Example plant functional type (PFT)
distributions scaled up from vegetation
sampling locations

Site A Site B Site C

In situ data from field measurement activities inform the
development of wide-scale maps of vegetation distribution
through inference using remote sensing data as surrogate
variables, and relationships with environmental controls

can be extracted

Langford, Z. L., et al. (2016), Mapping Arctic Plant Functional Type
Distributions in the Barrow Environmental Observatory Using

Site D

Site A Site B

Site C

WorldView-2 and LiDAR Datasets, Remote Sens., 8(9):733,

doi:10.3390/rs8090733.

Site D

0sses

Wet Tundra Graminoid
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Leveraging Advances in Machine Learning for Earth Sciences

Existing machine learning techniques can improve understanding of biospheric
processes and representation in Earth system models

Machine learning tasks Earth science tasks Machine learning tasks Earth science tasks

c Video prediction Short-term forecasting
a Object classification and localization Pattern classification

Dog: 0.994

|Cat: 0.982,’:

Predict future visual
representation

b Super-resolution and fusion Statistical downscaling and blending » &)

e ¢ Xq)
e |
f;;u?( :azm;ﬁazs G{ﬁﬁﬂd el i i il W o , \VT/‘ d Language translation Dynamic time series modelling
A biEhah i wes T/ Er liebte zu essen . Real vs predicted humidity values
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Figure 2 in Reichstein et al. (2019)



Spanning Spatial & Temporal Scales for Ecosystem Modeling
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Arctic Vegetation Mapping from Multi-Sensor Fusion

Used Hyperion Multispectral and IfSAR-derived Digital Elevation Model, applied cluster analysis, and
trained a convolutional neural network (CNN) with Alaska Existing Vegetation Ecoregions (AKEVT)

—— Kougarok Watershed

Vegetation Type

Bl Rock

B Water

I Alder-Willow Shrub

I Mixed Shrub-Sedge Tussock Tundra
[ | Dryas/Lichen Dwarf Shrub Tundra
[ Sedge-Willow-Dryas Tundra

Langford, Z. L., et al. (2019), Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural
Networks, Remote Sens., 11(1):69, doi:10.3390/rs11010069.



https://doi.org/10.3390/rs11010069

Satellite Data Analytics Enables Within-Season Crop Identification

Earliest date for crop type classification

s CON e Fallow m SOrghum
s SOybeans e Other Hay Rice
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Figure: a) Comparison of cluster-then-label crop map with 20
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USDA Crop Data Layer (CDL) shows similar patterns at —— Wl v " ',3'6 —
continental scale. b) Good spatial agreement is found at P 0 e® W et o (o0 pecdOgec®

three selected regions, but cluster-then-label crop maps Konduri, V. S., J. Kumar, W. W. Hargrove, F. M. Hoffman, and A. R.
lack sharpness at field boundaries due to coarser Ganguly (2020), Mapping Crops Within the Growing Season
resolution of MODIS data. Across the United States, Remote Sens. Environ., 251, 112048,

doi:10.1016/j.rse.2020.112048.
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Watershed-Scale Plant Communities Determined from AVIRIS NG W|th DNN

3T PR e

Kougarok o t, g “
Council

Teller

Legend
@ Alder-Willow Shrub © Sedge-Willow-Dryas Tundra
© Birch-Ericaceous-Lichen Shrub Tundra @ Tussock-Lichen Tundra

@ Dryas-Lichen Dwarf Shrub Tundra © Wet Meadow Tundra

© Ericaceous Dwarf Shrub Tundra © Wet Sedge Bog-Meadow

@ Mesic Graminoid-Herb Meadow O Willow Shrub

@ Mixed Shrub-Sedge Tussock Tundra X J thlow-Bu';h Shrub

At the Watershed scale, vegetation community distribution follows topograph/c and water controls.
At a fine scale, nutrients limit the distribution of vegetation types.

Earthinsights (Konduri et al., in pre

)



Tropical Phenology Study Area: Costa Rica and Panama

1ged vegetation/cgricnlture {cropland)

cvergreen ncedle lecf

cvergreen broac  caf
deci

de

uous needle lect

cuous broac  eaf

unknown

ergreen needle leal

evergreen brood leal

ducus needle leal

ducus broad leaf

e Buchhorn, M. ; Smets, B. ; Bertels, L. ; De Roo, B.; Lesiv, M. ; Tsendbazar, N. - E. ; Herold, M. ; Fritz, S.
Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe 2020.




Land Cover / Vegetation Types in Costa Rica and Panama

Class Costa Rica [% area] | Panama [% area]
Shrubs 0.75 0.62
Herbaceous vegetation 1.30 2.39
Cropland 29.76 19.73
Urban 1.15 0.67
Bare 0.00 0.00
Water 2.59 1.10
Wetland 1.53 1.43
Evergreen Broadleaf, Closed 44.64 53.46
Deciduous Broadleaf, Closed 0.03 0.00
Mixed, Closed Forest 0.03 0.00
Closed Forest 1.52 2.47
Evergreen Broadleaf, Open 4.81 4.77
Deciduous Broadleaf, Open 0.02 0.00
Mixed, Open Forest 0.00 0.00
Open Forest 11.88 13.25



Satellite Remote Sensing Time Series

e Sentinel-2 time series for the period 2017-2022

e Normalized Difference Red Edge Index (NDRE):
o NDRE=(NIR-RE)/(NIR+RE) | NDRE=(B8-B5)/(B8 +B5)

e Spatial resolution: 20m
e Temporal resolution: 15 days

e Data processing:
o NDRE data processing, cloud/shadow removal performed within Google Earth
Engine platform
o The remaining analyses were conducted on our own clusters
o A Big Data problem: ~324 million 20-m pixels x 150 time intervals = ~362 GB (double precision)

e NDRE data are noisy in space and time, so require corrections

e Noise filtering and regression-based gap filling were applied



Time Series of Normalized Difference Red Edge (NDRE) Index

May 30, 2020

(Limber, Kumar, et al., in prep)




NDRE Phenology by Land Cover Type for Costa Rica and Panama
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Clustering Annual NDRE Phenology
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Cluster 5 Dominated by Cropland and Open Forest

Cluster 5 of 10 [15.06%]
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Cluster 6 Dominated by Evergreen Broadleaf Closed Forest

Cluster 6 of 10 [51.35%]
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Cluster 8: Mix of Cropland, Evergreen Broadleaf Closed & Open

Cluster 8 of 10 [14.54%]
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Dynamic Spatial Pattern of NDRE Phenoregions
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identify significant trends that may be driven by anthropogenic activities



Low Height Vegetation Exhibits the Strongest Seasonality
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(Limber, Kumar, et al., in prep)



https://doi.org/10.1016/j.rse.2020.112165

Vegetation Structure is Dynamic (NASA GEDI L2B)

B B B3

Seasonal structural changes are exhibited across the full vertical profile of vegetation
in Costa Rica and Panama. (Sampling biases in GEDI likely introduce minor artifacts)
Next steps: Analyze meteorological drivers from reanalysis to correlate with changes
in vegetation phenology and structure

(Limber, Kumar,
et al., in prep)




Conclusions

e Satellite remote sensing complements in situ measurements and airborne
remote sensing in providing constraints on the global carbon cycle

e Advanced statistical and machine learning methods offer powerful approaches
for designing sampling strategies, combining multi-platform remote sensing
data, extracting useful natural and anthropogenic signals from the data, and
improving understanding of human-ecosystem interactions

e We may soon have enough sensors and platforms; spatial, temporal, and
spectral resolution; and storage and computational capacity to begin realizing
the human-integrated vision of Ellis and Ramankutty

e People are already in the map!

e Given the global extent and increasing effects of our changing climate system,

All biomes are anthromes!
S



