

Large Scale Climate Data Analytics

Forrest M. Hoffman, Jitendra Kumar, William W. Hargrove, and Richard T. Mills

Coupled Climate Model Future Projection Analysis

- Cluster analysis makes large, multivariate time-series projections from Earth System Models understandable.
- Community Climate System Model (CCSM3) results for years 2000–2099 were analyzed.
- Temperature, precipitation, and soil moisture were used in unsupervised classification.

Shifting Climate Regimes Defined Using Clustering

Data Mining for Detecting Threats to U.S. Forest Health

- USDA Forest Service, NASA, DOE ORNL, and USGS developed an early warning system for forest threats.
- *ForWarn* system uses phenology derived from NDVI observations from MODIS every 8 days.

Phenological Mode for 50 Phenoregions (2000–2011)

Next Generation Ecosystem Experiments (NGEE)

- NGEE is a model-inspired field measurement program focused on the Arctic and other critical regions.
- Quantitative methodology developed for stratifying domains and determining representativeness of sites.

37 Characteristics for the State of Alaska

	Number		
Description	or Name	Units	Source

Centroids Form a Skeleton in State Space

Global 5-y Running Averages of Spatial Area

SO Pheederse Constrained and the second and the sec

Annual Phenoregion Persistence (200–2011)

Monthly mean air temperature	12	°C	GCM
Monthly mean precipitation	12	mm	GCM
Day of freeze	mean	day of year	GCM
Day of freeze	standard deviation	days	
Day of thaw	mean	day of year	GCM
Day of thaw	standard deviation	days	
Length of growing season	mean	days	GCM
Length of growing season	standard deviation	days	
Maximum active layer thickness	1	m	GIPL
Warming effect of snow	1	°C	GIPL
Mean annual ground temperature at bottom	1	°C	GIPL
of active layer			•···· =
Mean annual ground surface temperature	1	°C	GIPL
Thermal offset	1	°C	GIPL
Limnicity	1	%	NHD
Elevation	1	m	SRTM30

Site and Network Representativeness 2000–2009 2090–2099

CCSM3 Climate Regime Definitions

Cluster Number	Temperature [K]	Precipitation [× 10 ⁻⁶ kg m ⁻² s ⁻¹]	Soil Moisture [kg m ⁻²]	Name	
-18	218.03	1.00	3148.15	Antarctica Winter #1 (Coldest and Driest)	
24	229.01	3.00	3148.08		
-30	239.94	5.00	3142.49	Antarctica/Greenland Winter #2	
-3	249.57	8.00	1000.66	Siberia/Canada High Latitude Winter	
+20	250.13	5.00	3131.96	Antarctica/Greenland Summer	
26	250.16	23.00	3074.85		
19	254.71	10.00	2000.09		
14	260.99	13.00	852.52		
+25	262.97	7.00	3118.23	Ice Sheet Summer Coastal Margins	
16	268.14	24.00	3116.24		
10	268.99	27.00	849.38		
1	272.12	16.00	2348.85		
-31	272.51	16.00	1281.38	Boreal Spring/Fall	
4	273.47	13.00	704.89		
23	274.05	52.00	2915.14		
8	278.24	64.00	886.54		
12	278.51	42.00	845.17		
29	281.45	28.00	747.28		
-2	285.59	5.00	542.59	Desert Winter #1	
27	286.52	17.00	678.39		
28	289.53	22.00	1640.25		
32	294.04	15.00	3373.13		
-11	295.05	3.00	547.47	Desert Winter #2	
21	298.00	97.00	814.77		
13	298.05	35.00	677.27		
17	298.31	54.00	741.58		
22	298.66	99.00	2861.80		
5	298.68	74.00	784.84		
6	298.82	124.00	866.06		
+7	299.73	18.00	650.07	Desert Margins	
15	299.78	168.00	1029.57		
+9	303.06	2.00	583.05	Desert Summer (Hottest and Driest)	

		55111	mainty				Scht un		
					Future ((2090-	-2099)		
						Toolik		Prudho	Э
	Sites	Barrow	Council	Atqasuk	k Ivotuk	Lake	Kougarok	Bay	Fairbanks
()	Barrow	3.31	9.67	4.63	6.05	5.75	9.02	3.69	11.67
2	Council	8.38	1.65	8.10	5.91	6.87	3.10	7.45	5.38
E P	Atqasuk	6.01	9.33	2.42	5.46	5.26	8.97	2.63	10.13
	Ivotuk	7.06	7.17	5.83	1.53	2.05	7.25	4.87	7.40
	Toolik Lake	7.19	7.67	6.07	2.48	1.25	7.70	5.23	8.16
	Kougarok	7.29	3.05	6.92	5.57	6.31	2.51	6.54	5.75
	Prudhoe Bay	5.29	8.80	3.07	4.75	4.69	8.48	1.94	9.81
	Fairbanks	12.02	5.49	10.36	7.83	8.74	6.24	10.10	1.96

Dissimilarity values are calculated as the Euclidean distance between sites in the 37-dimensional state space.

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove (2012) "Representativeness-Based Sampling Network Design for the Arctic." *Landscape Ecol.*, in review.

forrest@climatemodeling.org

Forrest M. Hoffman

