Long-term Terrestrial Carbon and Water Cycle Responses to Projected Climate Change Beyond 2100

Forrest M. Hoffman^{1,2}, James T. Randerson¹, Weiwei Fu¹,
Abigail L. S. Swann³ Natalie M. Mahowald⁴, Charles D. Koven⁵
Keith T. Lindsay⁶, Ernesto Muñoz⁶, and Gordon B. Bonan⁶

¹University of California–Irvine, ²Oak Ridge National Laboratory, ³University of Washington, ⁴Cornell University ⁵Lawrence Berkeley National Laboratory, and ⁶National Center for Atmospheric Research

March 3, 2015

CESM Biogeochemistry Working Group Meeting National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA

Climate–Carbon Cycle Feedback Analysis

For C⁴MIP, Friedlingstein et al. (2006) defined the climate–carbon cycle feedback in terms of the ratio of the changes in atmospheric CO_2 from simulations with and without radiative coupling,

$$\Delta C_A^c = \frac{1}{(1-g)} \Delta C_A^u. \tag{1}$$

To isolate the influences of biogeochemical and climate-driven responses of land and ocean carbon uptake, they defined sensitivity parameters in terms of changes in land and ocean carbon storage,

$$\Delta C_L^c = \beta_L \Delta C_A^c + \gamma_L \Delta T^c, \qquad (2)$$

$$\Delta C_O^c = \beta_O \Delta C_A^c + \gamma_O \Delta T^c, \qquad (3)$$

where β_L (β_O) is the land (ocean) concentration–carbon sensitivity [Pg C ppm⁻¹] and γ_L (γ_O) is the land (ocean) climate–carbon sensitivity [Pg C K⁻¹]. The strengths of these sensitivities were found by first solving for β_L (β_O) from a radiatively uncoupled simulation,

$$\Delta C_L^u = \beta_L \Delta C_A^u, \tag{4}$$

$$\Delta C_O^u = \beta_O \Delta C_A^u, \tag{5}$$

then solving for γ_L (γ_O) from a fully coupled simulation.

This approach assumes that β_L (β_O) are constant and that these feedback components add linearly.

Climate–Carbon Cycle Feedback Analysis

- Gregory et al. (2009) extended this feedback analysis methodology, highlighted the potential for nonlinear interactions, and advocated for a separate radiatively coupled, biosphere-uncoupled simulation.
- Zickfeld et al. (2011) quantified the non-linearity of the overall carbon cycle feedback in the University of Victoria Earth System Climate Model (UVic ESCM), an Earth system model of intermediate complexity.
- Arora et al. (2013) evaluated the carbon cycle feedbacks, including the concentration–carbon and climate–carbon sensitivities, for 1% CO₂ simulations from a collection of CMIP5 models.

CESM1-BGC Simulations

Three 451-y CESM1-BGC simulations were performed, following the CMIP5 Historical, RCP 8.5, and ECP 8.5 protocol for years 1850–2300. Each was forced with the same prescribed CO₂ mole fraction trajectory for radiative-only (**RAD**), biosphere-only (**BGC**), or full (**FC**) coupling.

Simulation Identifier	Radia	ntive Coupling Other GHG & aerosols	B CO ₂	iosphere Co Nitrogen deposition	oupling Land use change	Experiment Name
RAD BGC FC	✓ ✓	✓ ✓	√ √	√ √		bcrd bdrcs.pftcon bdrd.pftcon

Net Land Carbon Storage (1850–2300)

β_L and γ_L (1850–2300)

Gross Primary Production

9 y mean gross primary production (1850–2300)

Non-linear GPP Responses

Hydrology Variables (1850–2300)

Hydrology Variables (1850–2300)

Year

Attribution of Hydrology Changes by Coupling Effect

Table: Non-linear Table Sorted by Metric Distance from 1 (1850–2300)

Variable	∆RAD		ΔBGC		$\Delta RAD + \Delta BGC$		∆FC		$rac{\Delta RAD + \Delta BGC}{\Delta FC}$
LH	6.39	W/m^2	-7.57	W/m^2	-1.18	W/m^2	0.62	W/m^2	-1.91
ET	0.22	mm/d	-0.26	mm/d	-0.04	mm/d	0.02	mm/d	-1.83
NBP	-1.08	Pg C/y	1.18	Pg C/y	0.10	Pg C/y	-0.78	Pg C/y	-0.13
QVEGT	0.03	mm/d	-0.29	mm/d	-0.26	mm/d	-0.17	mm/d	1.55
QVEGE	-0.02	mm/d	0.05	mm/d	0.03	mm/d	0.06	mm/d	0.60
QSOIL	0.21	mm/d	-0.02	mm/d	0.19	mm/d	0.13	mm/d	1.40
BTRAN	0.04	unitless	0.04	unitless	0.08	unitless	0.06	unitless	1.28
GPP	-7.73	Pg C/y	82.54	Pg C/y	74.80	Pg C/y	99.56	Pg C/y	0.75
SMOIST	0.47	mm	2.28	mm	2.74	mm	2.25	mm	1.22
NPP	-8.94	Pg C/y	24.33	Pg C/y	15.39	Pg C/y	19.07	Pg C/y	0.81
SNOW	-0.04	mm/d	-0.01	mm/d	-0.05	mm/d	-0.04	mm/d	1.19
RH2M	-4.24	%	-3.63	%	-7.86	%	-6.78	%	1.16
WT	98.92	mm	111.60	mm	210.51	mm	188.38	mm	1.12
FSH	4.46	W/m^2	9.38	W/m^2	13.84	W/m^2	12.66	W/m^2	1.09
QOVER	0.05	mm/d	0.04	mm/d	0.09	mm/d	0.09	mm/d	1.08
QRUNOFF	0.25	mm/d	0.29	mm/d	0.54	mm/d	0.50	mm/d	1.07
ZWT	-0.36	m	-0.37	m	-0.73	m	-0.68	m	1.07
PRECIP	0.48	mm/d	0.02	mm/d	0.50	mm/d	0.53	mm/d	0.94
PME	0.26	mm/d	0.28	mm/d	0.54	mm/d	0.51	mm/d	1.06
TSA	10.73	K	1.45	ĸ	12.18	K	11.57	ĸ	1.05
RAIN	0.52	mm/d	0.03	mm/d	0.55	mm/d	0.58	mm/d	0.96
WA	72.47	mm	45.58	mm	118.06	mm	115.73	mm	1.02
TLAI	-0.39	unitless	1.60	unitless	1.20	unitless	1.19	unitless	1.01

References

- V. K. Arora, G. J. Boer, P. Friedlingstein, M. Eby, C. D. Jones, J. R. Christian, G. Bonan, L. Bopp, V. Brovkin, P. Cadule, T. Hajima, T. Ilyina, K. Lindsay, J. F. Tjiputra, and T. Wu. Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models. *J. Clim.*, 26(15):5289–5314, Aug. 2013. doi:10.1175/JCLI-D-12-00494.1.
- P. Friedlingstein, P. M. Cox, R. A. Betts, L. Bopp, W. von Bloh, V. Brovkin, S. C. Doney, M. Eby, I. Fung, B. Govindasamy, J. John, C. D. Jones, F. Joos, T. Kato, M. Kawamiya, W. Knorr, K. Lindsay, H. D. Matthews, T. Raddatz, P. Rayner, C. Reick, E. Roeckner, K.-G. Schnitzler, R. Schnur, K. Strassmann, S. Thompson, A. J. Weaver, C. Yoshikawa, and N. Zeng. Climate–carbon cycle feedback analysis, results from the C⁴MIP model intercomparison. *J. Clim.*, 19(14):3373–3353, July 2006. doi:10.1175/JCLI3800.1.
- J. M. Gregory, C. D. Jones, P. Cadule, and P. Friedlingstein. Quantifying carbon cycle feedbacks. J. Clim., 22(19):5232–5250, Oct. 2009. doi:10.1175/2009JCLI2949.1.
- K. Zickfeld, M. Eby, H. D. Matthews, A. Schmittner, and A. J. Weaver. Nonlinearity of carbon cycle feedbacks. J. Clim., 24(16):4255–4275, Aug. 2011. doi:10.1175/2011JCLI3898.1.

Acknowledgements

This research was sponsored by the Climate and Environmental Sciences Division (CESD) of the Biological and Environmental Research (BER) Program in the U. S. Department of Energy Office of Science and the National Science Foundation (AGS-1048890). This research used resources of the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-000R22725.