

International Land Model Benchmarking (ILAMB)

Forrest M. Hoffman forrest@climatemodeling.org

Oak Ridge National Laboratory and University of Tennessee

Climate Intervention Biology Working Group Meeting June 22, 2022

- A **benchmark** is a quantitative test of model function achieved through comparison of model results with observational data
- Acceptable performance on a benchmark is a necessary but not sufficient condition for a fully functioning model
- Functional relationship benchmarks offer tests of model responses to forcings and yield insights into ecosystem processes
- Effective benchmarks must draw upon a broad set of independent observations to evaluate model performance at multiple scales

.....

Models often fail to capture the amplitude of the seasonal cycle of atmospheric CO₂

Models may reproduce correct responses over only a limited range of forcing variables

- To **quantify and reduce uncertainties** in carbon cycle feedbacks to improve projections of future climate change (Eyring et al., 2019; Collier et al., 2018)
- To **quantitatively diagnose impacts of model development** on hydrological and carbon cycle process representations and their interactions
- To **guide synthesis efforts**, such as the Intergovernmental Panel on Climate Change (IPCC), by determining which models are broadly consistent with available observations (Eyring et al., 2019)
- To **increase scrutiny of key datasets** used for model evaluation
- To **identify gaps in existing observations** needed to inform model development
- To accelerate delivery of new measurement datasets for rapid and widespread use in model assessment

A community coordination activity created to:

- **Develop internationally accepted benchmarks** for land model performance by drawing upon collaborative expertise
- **Promote the use of these benchmarks** for model intercomparison
- Strengthen linkages between experimental, remote sensing, and Earth system modeling communities in the design of new model tests and new measurement programs
- Support the design and development of open source benchmarking tools

.....

Energy and Water Cycles

Carbon and Biogeochemical Cycles

2016 International Land Model Benchmarking (ILAMB) Workshop May 16–18, 2016, Washington, DC

Third ILAMB Workshop was held May 16–18, 2016

- Workshop Goals
 - Design of new metrics for model benchmarking
 - Model Intercomparison Project (MIP) evaluation needs
 - Model development, testbeds, and workflow processes
 - Observational datasets and needed measurements

.....

- Workshop Attendance
 - 60+ participants from Australia, Japan, China, Germany,
 Sweden, Netherlands, UK, and US (10 modeling centers)
 - ~25 remote attendees at any time

2016 International Land Model Benchmarking (ILAMB) Workshop Report

(Hoffman et al., 2017)

- **ILAMBv1** released at 2015 AGU Fall Meeting Town Hall, doi:10.18139/ILAMB.v001.00/1251597
- **ILAMBv2** released at 2016 ILAMB Workshop, doi:10.18139/ILAMB.v002.00/1251621
- **Open Source software** written in Python; **runs in** parallel on laptops, clusters, and supercomputers
- Routinely used for land model evaluation during development of ESMs, including the E3SM Land Model (Zhu et al., 2019) and the CESM Community Land Model (Lawrence et al., 2019)
- Models are scored based on statistical comparisons and functional response metrics

..... BERKELEY LA

Variable 7-score Variable Score

CRUNCEF

ILAMB Produces Diagnostics and Scores Models

- ILAMB generates a top-level **portrait plot** of models scores
- For every variable and dataset, ILAMB can automatically produce
 - **Tables** containing individual metrics and metric scores (when relevant to the data), including
 - Benchmark and model period mean
 - **Bias** and **bias score** (S_{bias})
 - Root-mean-square error (RMSE) and RMSE score (S_{rmse})
 - Phase shift and seasonal cycle score (S_{phase})
 - Interannual coefficient of variation and IAV score (S_{iav})
 - **Spatial distribution score** (*S*_{dist})
 - Overall score ($S_{overall}$) $S_{overall} = -$

$$\frac{S_{\text{bias}} + 2S_{\text{rmse}} + S_{\text{phase}} + S_{\text{iav}} + S_{\text{dist}}}{1 + 2 + 1 + 1 + 1}$$

- Graphical diagnostics
 - Spatial contour maps
 - Time series line plots
 - Spatial Taylor diagrams (Taylor, 2001)

finni

Similar tables and graphical diagnostics for functional relationships

Los Alamos

ILAMBv2.6 Package Current Variables

.....

- Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED3), CO₂ (NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, GBAF), Leaf area index (AVHRR, MODIS), Global net ecosystem carbon balance (GCP, Khatiwala/Hoffman), Net ecosystem exchange (Fluxnet, GBAF), Ecosystem Respiration (Fluxnet, GBAF), Soil C (HWSD, NCSCDv22, Koven)
- **Hydrology:** Evapotranspiration (GLEAM, MODIS), Evaporative fraction (GBAF), Latent heat (Fluxnet, GBAF, DOLCE), Runoff (Dai, LORA), Sensible heat (Fluxnet, GBAF), Terrestrial water storage anomaly (GRACE), Permafrost (NSIDC)
- **Energy:** Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES, GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)
- **Forcing:** Surface air temperature (CRU, Fluxnet), Diurnal max/min/range temperature (CRU), Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA), Surface down SW/LW radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)

- The CMIP6 suite of land models (right) has improved over the CMIP5 suite of land models (left)
- The multi-model mean outperforms any single model for each suite of models
- The multi-model mean CMIP6 land model is the "best model" overall
- Why did CMIP6 land models improve?

	R	elat	ive	Sca	le							
Worse Value Better Value												
Missing Data or Error												

(Hoffman et al., in prep)

						c	<	2.		1.		8		. <	2	2	8.		
			2	2.	80	2.4	SP	SN	1.8.	ME	12.	5		6P'	SV.	2.2	1m	0,10	5
		ST	45	CNI	E.	0	ou.	45	SN	0	5	M	,CP	ou.	45	SM	SM	TUCK.	Q,
	pc	0	N. 4	12	8.	11	C'N	.40	\$	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	111	-Vr	.40	34	Ne	Ne	
osystem and Carbon Cycle																_			
Biomass																			
Burned Area																			
Carbon Dioxide																			
Gross Primary Productivity														4					
Leaf Area Index																			
Global Net Ecosystem Carbon Balance																			
Net Ecosystem Exchange																			
Ecosystem Respiration																			
Soil Carbon																			
drology Cycle																			
Evapotranspiration																			
Evaporative Fraction																			
Latent Heat																			
Runoff																			
Sensible Heat			1																
Terrestrial Water Storage Anomaly																			
Permafrost																			
adiation and Energy Cycle																			
Albedo																			
Surface Upward SW Radiation																			
Surface Net SW Radiation				-															
Surface Upward LW Radiation																			
Surface Net LW Radiation																			
Surface Net Radiation																	_		
rcings																			
Surface Air Temperature																			
Diurnal Max Temperature																	_		
Diurnal Min Temperature				-															
Diurnal Temperature Range				-			-										_		
Precipitation																			
Surface Relative Humidity																		_	
Surface Downward SW Radiation																			
Surface Downward LW Radiation																	_		
ationships																	_		
BurnedArea/GFED4S																			
GrossPrimaryProductivity/GBAF																			
LeafAreaIndex/AVHRR																			
LeafAreaIndex/MODIS																			
Evapotranspiration/GLEAM																		_	
Evapotranspiration/MODIS																			
	1																		

	with providing rowing															
	To Participant and the second second second second															
					algrids	intersect Nee	n (in	(completer	neo				\$			orel
	net interest and the period set of the state) acle	Scutif
	not the sole period and period and residents in the latter of the sole and the sole															al Diste
Benchmark	۲ [:]	114.	We	\$°	We	\$°		Ø	P ₂ ,	<i>6r</i> .		Br	<i>bx</i>	Se	68	04
bcc-csm1-1	[:]	123.	112.	114.	8.79	0.0945		0.238	1.51	1.01		0.484	0.435	0.830	0.955	0.628
BCC-CSM2-MR	E	114.	107.	113.	5.88	0.671		-0.0233	1.52	1.11		0.479	0.447	0.817	0.941	0.626
CanESM2	[:]	129.	117.	114.	9.54			0.0601	2.31	2.00		0.388	0.437	0.650	0.836	0.549
CanESM5	E	141.	128.	114.	10.1			0.730	1.87	1.60		0.449	0.418	0.710	0.948	0.589
CESM1-BGC	[:]	129.	123.	113.	5.55	0.660		0.379	1.66	1.20		0.426	0.468	0.765	0.889	0.603
CESM2	[:]	110.	104.	113.	5.57	0.642		-0.0542	1.62	1.32		0.458	0.466	0.774	0.933	0.619
GFDL-ESM2G	[:]	167.	152.	114.	12.4			1.26	2.78	1.38		0.377	0.288	0.735	0.897	0.517
GFDL-ESM4	[:]	105.	99.0	114.	6.18			-0.177	1.59	1.49		0.495	0.403	0.702	0.939	0.588
IPSL-CM5A-LR	[:]	165.	150.	113.	11.7	0.515		1.18	2.68	1.20		0.327	0.352	0.781	0.896	0.542
IPSL-CM6A-LR	[:]	115.	109.	113.	5.27	0.708		0.111	1.39	1.14		0.547	0.477	0.790	0.961	0.650
MeanCMIP5	[:]	121.	115.	114.	6.65			0.574	1.41	0.981		0.494	0.502	0.799	0.965	0.652
MeanCMIP6	[:]	116.	110.	114.	6.26			0.129	1.17	0.931		0.572	0.522	0.826	0.956	
MIROC-ESM	[:]	129.	118.	102.	9.04	11.4		0.396	1.90	1.27		0.463	0.435	0.767	0.920	0.604
MIROC-ESM2L	[:]	116.	104.	113.	9.90	0.119		-0.0111	1.95	1.99		0.409	0.379	0.628	0.920	0.543
MPI-ESM-LR	[:]	169.	159.	104.	8.91	9.81		1.36	2.36	1.29		0.402	0.371	0.715	0.930	0.558
MPI-ESM1.2-LR	[:]	141.	133.	104.	6.89	9.81		0.725	2.06	1.13		0.409	0.393	0.769	0.925	0.578
NorESM1-ME	[:]	129.	120.	114.	7.82			0.386	1.86	1.25		0.387	0.456	0.761	0.856	0.583
NorESM2-LM	[:]	107.	97.5	114.	7.59			-0.0828	1.63	1.31		0.443	0.472	0.791	0.938	0.623
UK-HadGEM2-ES	E	137.	130.	113.	6.93	0.848		0.602	2.01	1.10		0.389	0.388	0.820	0.855	0.568
UKESM1-0-LL	[:]	126.	119.	113.	7.06	0.825		0.387	1.77	1.16		0.436	0.419	0.791	0.924	0.598

.....

BERKELEY LA

Gross Primary Productivity

- Multimodel GPP is compared with global seasonal GBAF estimates
- We can see Improvements across generations of models (e.g., CESM1 vs. CESM2, IPSL-CM5A vs. 6A)
- The mean CMIP6 and CMIP5 models perform best

Los Alamos

SurfaceDownwardSWRadiation/CERESed4.1

SurfaceNetSWRadiation/CERESed4.1

SurfaceAirTemperature/CRU4.02

Reasons for Land Model Improvements

ESM improvements in climate forcings (temperature, precipitation, radiation) likely partially drove improvements exhibited by land carbon cycle models

Reasons for Land Model Improvements

- Differences in bias scores for
- temperature, precipitation, and incoming radiation were primarily positive, further indicating more realistic climate representation

(Hoffman et al., in prep)

Reasons for Land Model Improvements

- While forcings got better, the largest improvements were in
- variable-to-variable relationships,
- suggesting that increased land model complexity was also partially responsible for higher CMIP6 model scores

ILAMB & IOMB CMIP5 vs 6 Evalua RUBISCO

- (a) ILAMB and (b) IOMB have been used to evaluate how land and ocean model performance has changed from CMIP5 to CMIP6
- Model fidelity is assessed through comparison of historical simulations with a wide variety of contemporary observational datasets
- The UN's Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) from Working Group 1 (WG1) Chapter 5 contains the full ILAMB/IOMB evaluation as Figure 5.22

_			CI	МІР	95 E	SM	ls			CMIP6 ESMs										1		
(a) Land Benchmarking Results	bcc-csm1-1	CanESM2	CESM1-BGC	GFDL-ESM2G	IPSL-CM5A-LR	MIROC-ESM	MPI-ESM-LR	NorESM1-ME	HadGEM2-ES	BCC-CSM2-MR	CanESM5	CESM2	GFDL-ESM4	IPSL-CM6A-LR	MIROC-ES2L	MPI-ESM1.2-LF	NorESM2-LM	UKESM1-0-LL	Mean CMIP5	Mean CMIP6		
Land Ecosystem & Carbon Cycle	-0.72	-0.93	-1.55	-1.51	-0.13	0.60	-0.43	-1.31	0.19	-0.43	0.66	0.48	-1.09	0.22	0.60	-0.07	1.00	0.49	1.63	2.30		
Biomass	0.20	-0.45	-1.52	-0.40	-1.26	-0.26	-1.07	-1.77	0.92	1.39	0.74	-0.20	-0.54	0.16	0.93	-0.96	-0.01	1.04	1.23	1.82		
Burned Area			-0.87				0.10	-0.83				1.60										
Leaf Area Index	-0.20	-0.64	-1.30	-2.53	-0.01	0.30	0.01	-1.85	-0.16	0.27	0.08	0.34	-0.70	1.19	0.82	0.46	0.37	0.69	1.04	1.81		
Soil Carbon	0.27	1.26	-1.46	0.07	0.75	0.47	-0.03	-1.14	0.07	0.23	1.35	-0.99	-2.04	-1.55	0.90	-0.75	-0.17	0.24	1.01	1.48		
Gross Primary Productivity	0.59	-1.23	0.01	-1.81	-1.40	0.29	-0.53	-0.24	-1.04	0.77	0.04	0.59	-0.38	1.17	-1.02	-0.37	0.73	0.09	1.51			
Net Ecosystem Exchange	-0.42	-1.81	-0.21	-0.65	1.10	-0.24	0.80	0.02	-1.03	-1.02	-1.19	0.59	1.69	-0.42	0.63	-0.21	1.08	-1.43	1.28	1.43		
Ecosystem Respiration	0.90	-0.56	-0.86	-0.24	-1.35	0.99	-0.01	-0.94	-1.54	0.81	0.59	0.51	-0.79	0.90	-0.21	-1.24	0.43	-0.94	1.34	2.21		
Carbon Dioxide		-1.54	-0.36	-2.92	-0.74	1.53	-0.00	0.37	0.85		0.42	0.26	0.39	0.59	1.10	-0.87	0.21	0.69	0.09	-0.07		
Global Net Carbon Balance		-1.64	-0.88	-1.13	0.17	-0.31	-0.38	-0.50	0.24		-0.23	1.34	-1.70	0.17	-0.74	1.45	1.56	0.26	0.92	1.40		
Land Hydrology Cycle		-0.42	0.44	-0.18	-0.49	-0.52	-0.57	0.17	0.70	0.15	-0.47	1.51	-1.24	0.58	-0.72	-0.83	0.97	0.87	1.00	1.70		
Evapotranspiration	-0.82	-0.99	-0.27	-1.02	0.64	-1.14	-0.62	-0.60	0.28	0.39	-1.08	1.09	0.65	0.43	-1.40	-1.01	0.82	1.05	1.41			
Evaporative Fraction		0.74	0.74	-0.14	-0.85	0.21	-1.98	0.22	-0.34	0.10	0.11	1.25	-0.88	1.29	-1.65	-1.81	1.11	-0.06	0.98	1.29		
					_																	
Ierrestrial Water Storage Anomaly	-2.79	-0.45	0.47	0.50	-0.38	0.34	0.35	0.43	0.58	0.15	-0.08	0.95	-2.91	0.43	0.37	0.15	0.39	0.51	0.49	0.50		
Permafrost		-2.26	0.01	0.13	0.83	0.69	0.56	0.69	-0.56	-0.11	-3.02	0.83	0.74	-0.18	0.49	0.42	0.89	0.43	0.06	0.23		
(b) Ocean Benchmarking Results			14 m 2														-					
Ocean Ecosystems				0.20	-0.20		0.04	_	0.22		-0.37	0.83	-0.37	-0.26	-0.91	-0.67	-1.93	0.27	0.30	0.67		
Споторнун		-1.50	2.15	0.44	1.02		0.49		0.56	_	-0.67	0.88	-0.21	0.10	-1.02	-0.41	-2.19	0.18	0.13	0.04		
Oxygen, surface			0.73	-0.13	-1.98		-0.53	-1.53	-0.29		0.73	0.34	-0.09	-0.41	0.35	-0.30	0.40	0.49	0.64	1.57		
Ocean Nutrients			-0.84	-0.10	0.91		-0.80	-1.25		_		-0.02	1.00	1.88		-0.90	-1.14	-0.17	-0.16	1.60		
Nitrate, surface		0.21	-1.63	0.67	1.22		-0.18	-1.70	0.82		1.21	+0.90	0.29	1.21	1.02	0.39	-1.78	•0.56	-0.47	0.18		
Phosphate, surface			-0.69	-0.04	0.04		-0.45	-0.43		_	-	0.39	-0.14	0.17	-0.41	-0.98	0.00	0.02	0.88	1.63		
Silicate, surface			0.44	-0.71	0.24		-0.81	-0.20	-2.16			0.50	1.24	1.60		-1.21	-0.19	0.18	-0.29	1.37		
Ocean Carbon										_	1.24	-0.23	-0.62	-0.69	-1.08	-1.12	1.31			1.19		
TAIK, surface		-0.27	1.01	0.12	0.19		0.32	-2.31	-0.22		0.06	-0.36	0.85	-0.42	0.29	-2.40	1.27	0.06	1.27	0.54		
Salinity, 700m	0.44	-0.35	-1.06	-0.54	0.70	0.46	-0.46	-0.80	0.32	0.36	0.25	-1.16	-0.47	0.54	0.33	-0.39	-0.87	-0.54	1.58	1.64		
Ocean Relationships			-1.86	-0.36	-0.29		1.50	-0.43	0.68		-0.02	0.72	1.20	0.17	-1.86	0.02		-1.12	0.39	1.25		
Oxygen, surface/WOA2018			0.27	0.23	-0.63		-0.26	-0.12	-0.38		0.29	-0.21	0.19	0.18	0.14	-0.07		0.03	-0.23	0.53		
Nitrate, surface/WOA2018		-2.41	-1.38	-0.18	0.06		1.41	-0.16	0.78		0.09	0.79	1.07	0.26	-1.35	0.20		-0.74	0.52	1.04		
								F	Rela	ativ	e S	cal	е									
						w	ors	e V	alu	e	B	ett	er	Val	ue							

Missing Data or Error

- **Model benchmarking** is increasingly important as model complexity increases
- Systematic model benchmarking is useful for
 - **Verification** during model development to confirm that new model code improves performance in a targeted area without degrading performance in another area
 - **Validation** when comparing performance of one model or model version to observations and to other models or other model versions
- The **ILAMB package** employs a suite of in situ, remote sensing, and reanalysis datasets to comprehensively evaluate and score land model performance, *irrespective of any model structure or set of process representations*
- ILAMB is **Open Source**, is written in **Python**, **runs in parallel** on laptops to supercomputers, and has been **adopted in most modeling centers**
- Usefulness of ILAMB depends on the quality of incorporated observational data, characterization of uncertainty, and selection of relevant metrics

- Bonan, G. B., D. L. Lombardozzi, W. R. Wieder, K. W. Oleson, D. M. Lawrence, F. M. Hoffman, and N. Collier (2019), Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014), *Global Biogeochem. Cycles*, 33(10):1310–1326, doi:10.1029/2019GB006175.
- Collier, N., F. M. Hoffman, D. M. Lawrence, G. Keppel-Aleks, C. D. Koven, W. J. Riley, M. Mu, and J. T. Randerson (2018), The International Land Model Benchmarking (ILAMB) system: Design, theory, and implementation, *J. Adv. Model. Earth Syst.*, 10(11):2731–2754, doi:10.1029/2018MS001354.
- Eyring, V., P. M. Cox, G. M. Flato, P. J. Gleckler, G. Abramowitz, P. Caldwell, W. D. Collins, B. K. Gier, A. D. Hall, F. M. Hoffman, G. C. Hurtt, A. Jahn, C. D. Jones, S. A. Klein, J. Krasting, L. Kwiatkowski, R. Lorenz, E. Maloney, G. A. Meehl, A. Pendergrass, R. Pincus, A. C. Ruane, J. L. Russell, B. M. Sanderson, B. D. Santer, S. C. Sherwood, I. R. Simpson, R. J. Stouffer, and M. S. Williamson (2019), Taking climate model evaluation to the next level, *Nat. Clim. Change*, 9(2):102–110, doi:10.1038/s41558-018-0355-y.
- Hoffman, F. M., C. D. Koven, G. Keppel-Aleks, D. M. Lawrence, W. J. Riley, J. T. Randerson, A. Ahlström, G. Abramowitz, D. D. Baldocchi, M. J. Best, B. Bond-Lamberty, M. G. De Kauwe, A. S. Denning, A. R. Desai, V. Eyring, J. B. Fisher, R. A. Fisher, P. J. Gleckler, M. Huang, G. Hugelius, A. K. Jain, N. Y. Kiang, H. Kim, R. D. Koster, S. V. Kumar, H. Li, Y. Luo, J. Mao, N. G. McDowell, U. Mishra, P. R. Moorcroft, G. S. H. Pau, D. M. Ricciuto, K. Schaefer, C. R. Schwalm, S. P. Serbin, E. Shevliakova, A. G. Slater, J. Tang, M. Williams, J. Xia, C. Xu, R. Joseph, and D. Koch (2017), *International Land Model Benchmarking (ILAMB) 2016 Workshop Report*, Technical Report DOE/SC-0186, U.S. Department of Energy, Office of Science, Germantown, Maryland, USA, doi: 10.2172/1330803.

Lawrence, D. M., R. A. Fisher, C. D. Koven, K. W. Oleson, S. C. Swenson, G. B. Bonan, N. Collier, B. Ghimire, L. van Kampenhout, D. Kennedy, E. Kluzek, P. J. Lawrence, F. Li, H. Li, D. Lombardozzi, W. J. Riley, W. J. Sacks, M. Shi, M. Vertenstein, W. R. Wieder, C. Xu, A. A. Ali, A. M. Badger, G. Bisht, M. van den Broeke, M. A. Brunke, S. P. Burns, J. Buzan, M. Clark, A. Craig, K. Dahlin, B. Drewniak, J. B. Fisher, M. Flanner, A. M. Fox, P. Gentine, F. M. Hoffman, G. Keppel-Aleks, R. Knox, S. Kumar, J. Lenaerts, L. R. Leung, W. H. Lipscomb, Y. Lu, A. Pandey, J. D. Pelletier, J. Perket, J. T. Randerson, D. M. Ricciuto, B. M. Sanderson, A. Slater, Z. M. Subin, J. Tang, R. Q. Thomas, M. V. Martin, and X. Zeng (2019), The Community Land Model Version 5: Description of new features, benchmarking, and impact of forcing uncertainty, *J. Adv. Model. Earth Syst.*, 11(12):4245–4287, doi:10.1029/2018MS001583.

Zhu, Q., W. J. Riley, J. Tang, N. Collier, F. M. Hoffman, X. Yang, and G. Bisht (2019), Representing nitrogen, phosphorus, and carbon interactions in the E3SM Land Model: Development and global benchmarking, *J. Adv. Model. Earth Syst.*, 11(7):2238–2258, doi:10.1029/2018MS001571.

