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I Rapidly increasing atmospheric carbon dioxide (CO2)
concentrations are altering Earth’s climate.

I Perturbation of the carbon cycle could induce feedbacks on
future CO2 concentrations and climate.

I Climate-carbon cycle feedbacks are highly uncertain and
potentially large.

I Prediction of feedbacks requires knowledge of mechanisms
connecting carbon and nutrients with the climate system.
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Research Objectives

Objective 1

Quantify climate-carbon cycle feedback responses in global models
contributing to the Coupled Model Intercomparison Project Phase
5 (CMIP5) for the IPCC Fifth Assessment Report.

Objective 2

Reduce the range of uncertainty in climate predictions by
improving the model representation of feedbacks through
comparisons with contemporary observations.
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Feedback Analysis

I Friedlingstein et al. (2003, 2006) defined the climate-induced
change in atmospheric CO2 in terms of the change due to direct
addition of CO2,

∆C c
A =

1

1 − g
∆C u

A , (1)

where g is the gain of the climate-carbon cycle feedback.

I The effect of changing CO2 on temperature is approximated,

∆T c = α∆C c
A, (2)

where α is the climate sensitivity to CO2 in K ppm−1.

I The change in land carbon storage,

∆C c
L = βL∆COc

2 + γL∆T c , (3)

where βL is the sensitivity to the change in CO2, and γL is the
sensitivity to climate change.



Feedback Analysis

I Friedlingstein et al. (2003, 2006) defined the climate-induced
change in atmospheric CO2 in terms of the change due to direct
addition of CO2,

∆C c
A =

1

1 − g
∆C u

A , (1)

where g is the gain of the climate-carbon cycle feedback.

I The effect of changing CO2 on temperature is approximated,

∆T c = α∆C c
A, (2)

where α is the climate sensitivity to CO2 in K ppm−1.

I The change in land carbon storage,

∆C c
L = βL∆COc

2 + γL∆T c , (3)

where βL is the sensitivity to the change in CO2, and γL is the
sensitivity to climate change.



Feedback Analysis

I Friedlingstein et al. (2003, 2006) defined the climate-induced
change in atmospheric CO2 in terms of the change due to direct
addition of CO2,

∆C c
A =

1

1 − g
∆C u

A , (1)

where g is the gain of the climate-carbon cycle feedback.

I The effect of changing CO2 on temperature is approximated,

∆T c = α∆C c
A, (2)

where α is the climate sensitivity to CO2 in K ppm−1.

I The change in land carbon storage,

∆C c
L = βL∆COc

2 + γL∆T c , (3)

where βL is the sensitivity to the change in CO2, and γL is the
sensitivity to climate change.



The 11 C4MIP models varied by a factor of

I 8 in the gain of the carbon cycle feedback (g),

I 9 in the climate sensitivity of land storage (γL), and

I 14 in the concentration sensitivity of land storage (βL).

Spread in the projected atmospheric CO2 increase due to feedbacks (left) and total
land carbon uptake (right) from 11 models participating in the C4MIP Experiment.

From Friedlingstein et al. (2006, Figure 1).

No comparisons were made with observations.
This is the next crucial step for reducing uncertainties!
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Reducing Uncertainties Using Observations

To reduce feedback uncertainties using contemporary observations,

1. there must be a relationship between contemporary variability
and future trends on longer time scales within the model, and

2. it must be possible to constrain contemporary variability in
the model using observations.

Example

Hall and Qu (2006) evaluated the
strength of the springtime snow
albedo feedback (SAF; ∆αs/∆Ts)
from 17 models used for the IPCC
AR4 and compared them with the
observed springtime SAF from
ISCCP and ERA-40 reanalysis.
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Persistence of Atmospheric CO2 Biases

Objective: Quantify and diagnose persistence of atmospheric CO2

biases in Earth System Model (ESMs).

Hypothesis

Biases in prognostic atmospheric CO2 are persistent on decadal
time scales because carbon-concentration feedbacks in ESMs (βL

and βO) are related to processes that do not change rapidly.

Approach:

I Quantify CO2 biases in emissions-forced CMIP5 historical
(esmHistorical) and future (esmrcp85) simulation results.

I Use observationally based estimates of ocean carbon
inventories from Sabine et al. (2004) and Khatiwala et al.
(2009, 2012) to diagnose causes of biases.

I Use model results to develop an atmospheric CO2 trajectory
with reduced bias and uncertainty range.



Schematic Summary of CMIP5 Long-Term Experiments



(a) Most ESMs exhibit
a high bias in predicted
atmospheric CO2 mole
fraction, which ranges
from 357–405 ppm at
the end of the historical
period (1850–2005).

(b) The multi-model
mean is biased high
from 1945 throughout
the 20th century, ending
5.3 ppm above
observations in 2005.
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(a) Most ESMs exhibit
a low bias in ocean
carbon accumulation
from 1870–1970 as
compared with adjusted
estimates from
Khatiwala et al. (2012).

(b) ESMs have a wide
range of land carbon
accumulation responses
to increasing CO2 and
land use change,
ranging from a net
source of 85 Pg C to a
sink of 110 Pg C in
2010.
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Once normalized
for high
atmospheric
CO2 mole
fraction biases,
most ESMs
exhibit a low
bias in ocean
carbon
accumulation.
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A relationship exists
between contemporary
and future CO2 over
decadal time scales, so
carbon model biases
persist over decadal
time scales.

The (a) 2060 vs. 2010
and (b) 2100 vs. 2010
atmospheric CO2 mole
fraction fit for CMIP5
emissions-forced
simulations of RCP 8.5.
Observed atmospheric
CO2 mole fraction is
represented by the
vertical line at
385.6 ± 2 ppm.

Future  vs. Contemporary Atmospheric CO2 Mole Fraction
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R2 of Multi−model  Bias Structure

Year
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The coefficient of determination, R2, of the multi-model bias structure
relative to the model CO2 predictions for 2010 is statistically significant
for 1910–2100.



Contemporary CO2 Tuned Model (CCTM)
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Multi-model estimates and contemporary observations can be used to
reduce uncertainties in future scenarios.



Implications for Radiative Forcing and Temperature

Projections for  Individual CMIP5 Models
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Implications for CO2, Radiative Forcing, and Temperature

CO2 Mole Radiative Cumulative ∆T
Fraction (ppm) Forcing (W m−2) ∆T (◦C) Bias (◦C)

Model 2010 2060 2100 2010 2060 2100 2010 2060 2100 2010 2060 2100

BCC-CSM1.1 390 603 945 1.70 4.03 6.43 1.06 2.60 4.38 0.03 0.02 0.06
BCC-CSM1.1-M 396 619 985 1.78 4.16 6.65 1.14 2.71 4.54 0.11 0.13 0.22

BNU-ESM 382 602 963 1.59 4.02 6.53 0.98 2.54 4.44 −0.05 −0.04 0.12
CanESM2 r1 394 641 1024 1.75 4.36 6.86 1.07 2.80 4.69 0.04 0.22 0.37
CanESM2 r2 392 641 1023 1.72 4.35 6.85 1.06 2.79 4.69 0.03 0.21 0.37
CanESM2 r3 396 641 1025 1.78 4.35 6.87 1.10 2.80 4.69 0.07 0.22 0.37
CESM1-BGC 407 697 1121 1.92 4.80 7.34 1.21 3.10 5.06 0.18 0.52 0.74
FGOALS-S2.0 404 636 993 1.89 4.31 6.70 1.19 2.79 4.62 0.16 0.21 0.30
GFDL-ESM2G 395 616 967 1.77 4.14 6.56 1.14 2.70 4.50 0.11 0.12 0.18
GFDL-ESM2M 400 621 964 1.83 4.18 6.54 1.18 2.74 4.50 0.15 0.16 0.18
HadGEM2-ES 411 636 983 1.98 4.31 6.64 1.28 2.83 4.58 0.25 0.25 0.26

INM-CM4 386 591 897 1.64 3.92 6.15 1.00 2.57 4.21 −0.03 −0.01 −0.11
IPSL-CM5A-LR 375 573 908 1.48 3.75 6.22 0.93 2.40 4.22 −0.10 −0.18 −0.10

MIROC-ESM 398 658 1121 1.81 4.50 7.35 1.15 2.90 5.00 0.12 0.32 0.68
MPI-ESM-LR 383 590 948 1.60 3.91 6.45 1.04 2.51 4.39 0.01 −0.07 0.07

MRI-ESM1 361 516 778 1.28 3.20 5.39 0.81 2.05 3.63 −0.22 −0.53 −0.69

Multi-model Mean 393 621 968 1.74 4.19 6.56 1.10 2.71 4.48 0.07 0.13 0.16
CCTM Estimate 386 600 931 1.64 4.00 6.35 1.03 2.58 4.32 — — —

Historical + RCP 8.5 385 592 916 1.63 3.93 6.26 1.02 2.53 4.28 −0.01 −0.05 −0.04



Discussion and Conclusions

I Ordering among model predictions of atmospheric CO2 persisted on
the order of several decades.

I Underestimate of ocean CO2 uptake likely contributes to a
persistent and growing atmospheric CO2 bias in most ESMs.

I Similar deficiencies in land models—including the response of GPP
to CO2 concentration, allocation to woody pools, nutrient
limitation, response of heterotrophic respiration to temperature, and
land use change—further contribute to an atmospheric CO2 bias.

I Future fossil fuel emissions targets designed to stabilize CO2 levels
would be too low if estimated from the multi-model mean of ESMs.

I Value in tuning models: The CCTM projection provided a 6-fold
reduction in uncertainty at 2060 and a 5-fold reduction at 2100.

I Models could be improved through extensive comparison with
observations using a community benchmarking system like planned
for the International Land Model Benchmarking (ILAMB) project.



Why Benchmark?
I to show the broader science community and the public that the

representation of the carbon cycle in climate models is improving;

I to provide a means, in Earth System models, to quantitatively
diagnose impacts of model development in related fields on carbon
cycle and land surface processes;

I to guide synthesis efforts, such as the Intergovernmental Panel on
Climate Change (IPCC), in the review of mechanisms of global
change in models that are broadly consistent with available
contemporary observations;

I to increase scrutiny of key datasets used for model evaluation;

I to identify gaps in existing observations needed for model validation;

I to provide a quantitative, application-specific set of minimum
criteria for participation in model intercomparison projects (MIPs);

I to provide an optional weighting system for multi-model mean
estimates of future changes in the carbon cycle.



An Open Source Benchmarking Software System

IPCC AR6
. . .

Future MIPsGCP TRENDY CMIP5

MsTMIP
NACP Interim

LBA−DMIP
C−LAMP

I Human capital costs of making rigorous model-data comparisons is
considerable and constrains the scope of individual MIPs.

I Many MIPs spend resources “reinventing the wheel” in terms of
variable naming conventions, model simulation protocols, and
analysis software.

I Need for ILAMB: Each new MIP has access to the model-data
comparison modules from past MIPs through ILAMB (e.g., MIPs
use one common modular software system). Standardized
international naming conventions also increase MIP efficiency.





What is a Benchmark?

I A benchmark is a quantitative test
of model function, for which the
uncertainties associated with the
observations can be quantified.

I Acceptable performance on
benchmarks is a necessary but
not sufficient condition for a
fully functioning model.

I Since all datasets have strengths
and weaknesses, an effective
benchmark is one that draws upon
a broad set of independent
observations to evaluate model
performance on multiple temporal
and spatial scales.

(Randerson et al., 2009)



Example Benchmark Score Sheet from C-LAMP

Models

B
G

C
 D

atasets

Uncertainty Scaling Total
Metric Metric components of obs. mismatch score Sub-score CASA′ CN

LAI Matching MODIS observations 15.0 13.5 12.0
• Phase (assessed using the month of maximum LAI) Low Low 6.0 5.1 4.2
• Maximum (derived separately for major biome classes) Moderate Low 5.0 4.6 4.3
• Mean (derived separately for major biome classes) Moderate Low 4.0 3.8 3.5

NPP Comparisons with field observations and satellite products 10.0 8.0 8.2
• Matching EMDI Net Primary Production observations High High 2.0 1.5 1.6
• EMDI comparison, normalized by precipitation Moderate Moderate 4.0 3.0 3.4
• Correlation with MODIS (r2) High Low 2.0 1.6 1.4
• Latitudinal profile comparison with MODIS (r2) High Low 2.0 1.9 1.8

CO2 annual cycle Matching phase and amplitude at Globalview flash sites 15.0 10.4 7.7
• 60◦–90◦N Low Low 6.0 4.1 2.8
• 30◦–60◦N Low Low 6.0 4.2 3.2
• 0◦–30◦N Moderate Low 3.0 2.1 1.7

Energy & CO2 fluxes Matching eddy covariance monthly mean observations 30.0 17.2 16.6
• Net ecosystem exchange Low High 6.0 2.5 2.1
• Gross primary production Moderate Moderate 6.0 3.4 3.5
• Latent heat Low Moderate 9.0 6.4 6.4
• Sensible heat Low Moderate 9.0 4.9 4.6

Transient dynamics Evaluating model processes that regulate carbon exchange 30.0 16.8 13.8
on decadal to century timescales
• Aboveground live biomass within the Amazon Basin Moderate Moderate 10.0 5.3 5.0
• Sensitivity of NPP to elevated levels of CO2: comparison Low Moderate 10.0 7.9 4.1

to temperate forest FACE sites
• Interannual variability of global carbon fluxes: High Low 5.0 3.6 3.0

comparison with TRANSCOM
• Regional and global fire emissions: comparison to High Low 5.0 0.0 1.7

GFEDv2
Total: 100.0 65.9 58.3

(Randerson et al., 2009)



I Meeting Co-organized by Forrest Hoffman (UC-Irvine and ORNL), Chris
Jones (UK Met Office), Pierre Friedlingstein (U. Exeter and IPSL-LSCE),
and Jim Randerson (UC-Irvine).

I About 45 researchers participated from the United States, Canada, the
United Kingdom, the Netherlands, France, Germany, Switzerland, China,
Japan, and Australia.



General Benchmarking Procedure

(Luo et al., 2012)



ILAMB 1.0 Benchmarks Now Under Development

Annual Seasonal Interannual
Mean Cycle Variability Trend Data Source

Atmospheric CO2
Flask/conc. + transport X X X NOAA, SIO, CSIRO

TCCON + transport X X X Caltech
Fluxnet

GPP, NEE, TER, LE, H, RN X X X Fluxnet, MAST-DC
Gridded: GPP X X ? MPI-BGC

Hydrology/Energy
runoff ratio (R/P) river flow X X GRDC, Dai, GFDL

global runoff/ocean balance X Syed/Famiglietti
albedo (multi-band) X X MODIS, CERES

soil moisture X X de Jeur, SMAP
column water X X GRACE

snow cover X X X X AVHRR, GlobSnow
snow depth/SWE X X X X CMC (N. America)

Tair & P X X X X CRU, GPCP and TRMM
Gridded: LE, H X X MPI-BGC, dedicated ET

Ecosystem Processes & State
soil C, N X HWSD, MPI-BGC

litter C, N X LIDET
soil respiration X X X X Bond-Lamberty

FAPAR X X MODIS, SeaWIFS
biomass & change X X Saatchi, Pan, Blackard

canopy height X Lefsky, Fisher
NPP X EMDI, Luyssaert

Vegetation Dynamics
fire — burned area X X X GFED3

wood harvest X X Hurtt
land cover X MODIS PFT fraction



Summary

I Our international collaboration has made significant progress
on development of metrics and diagnostics for ILAMB 1.0.

I As CMIP5 papers come out, we need to collect cost functions
and algorithms for integration into an ILAMB 1.0 package.

I Much more work is needed on
I diagnostics for full suite of variables and time scales,
I combining metrics into model skill scores,
I applying skill scores to weight models for multi-model

statistics, and
I writing papers.

I Greater participation is welcome!

I ILAMB Meeting in 2013? With ICDC-9 or GLASS/GSWP?

International Land Model Benchmarking (ILAMB) Project
http://www.ilamb.org/
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