The Carbon-Land Model Intercomparison Project (C-LAMP) and the International Land Model Benchmarking (ILAMB) Project for the IPCC AR5

Results

Metrics

Euture

II AMB

Next Steps

ac

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton¹, Gordon B. Bonan³, Natalie M. Mahowald⁴, Keith Lindsay³, Yen-Huei Lee³, Cynthia D. Nevison³, Steven W. Running⁵, Scott C. Doney⁶, and Inez Y. Fung⁷

¹Oak Ridge National Laboratory, ²University of California-Irvine, ³National Center for Atmospheric Research, ⁴Cornell University, ⁵University of Montana, ⁶Wood Hole Oceanographic Institute, and ⁷University of California-Berkeley

Climate and Earth System Modeling PI Meeting 19 September 2011 • Grand Hyatt, Washington, DC, USA

Forrest M. Hoffman, James T. Randerson, et al.

C-LAMP

Resources

Protocol

C-LAMP and ILAMB

C-LAMP	Resources	Protocol	Metrics	Results	Future	ILAMB	Next Steps

- The Carbon-Land Model Intercomparison Project (C-LAMP) began as a CCSM Biogeochemistry Working Group project to assess model capabilities in the coupled climate system and to explore processes important for inclusion in the CCSM4/CESM1 for use in the IPCC Fifth Assessment Report (AR5).
- Unlike traditional MIPs, C-LAMP was designed to confront models with observational datasets, develop metrics for evaluation of biosphere models, and build a general-purpose biogeochemistry diagnostics package for model validation and verification (V&V).

Forrest M. Hoffman, James T. Randerson, et al.

C-LAMP and ILAMB

æ

- C-LAMP was a subproject of the Computational Climate Science End Station (Warren Washington, PI), a U.S. Dept. of Energy INCITE Project.
- Models were initially run on the Cray X1E vector supercomputer in ORNL's National Center for Computational Sciences (NCCS).
 Cray X1E (phoenix)

1024 processors (MSPs), 2048 GB memory, and 18.08 TFlop/s peak DECOMMISSIONED September 30, 2008

Forrest M. Hoffman, James T. Randerson, et al. C-LAMP and ILAMB

- Biosphere models coupled to the Community Climate System Model version 3.1
 - CLM3-CASA' Carnegie/Ames/Stanford Approach Model previously run in CSM1.4 (Fung)
 - CLM3-CN coupled carbon and nitrogen cycles based on the Biome-BGC model (Thornton)

A (1) > (1) > (1)

• CCSM3.1 partially coupled ("I" & "F" configurations) run at T42 resolution ($\sim 2.8^{\circ} \times 2.8^{\circ}$), spectral Eulerian dycore, $1^{\circ} \times 0.27^{\circ}$ -0.53° ocean & sea ice data models (T42gx1v3).

- Experiment 1: Models forced with improved NCEP/NCAR reanalysis climate data set (Qian, *et al.* 2006) to examine the influence of climate variability, prescribed atmospheric CO₂, and land cover change on terrestrial carbon fluxes during the 20th century (specifically 1948–2004).
- Experiment 2: Models coupled with an active atmosphere (CAM3), prescribed atmospheric CO₂, prescribed sea surface temperatures and ocean carbon fluxes to examine the effect of a coupled biosphere-atmosphere for carbon fluxes and climate during the 20th century.
- All forcing and observational datasets are being shared, and model results are available through Earth System Grid (ESG).
- Experimental protocol, output fields, and metrics described at http://www.climatemodeling.org/c-lamp/.

< 注→ < 注→

C		D	Day	
<u> </u>	LAIVI		res	sou

Protocol

ces

Metrics

Results

Future

ILAMB Next Steps

	Offline Forcing with NCEP/NCAR Reanalysis	Offline Forcing with NCEP/NCAR Reanalysis							
Exp.	Description	Time Period							
1.1	Spin Up	\sim 4,000 y							
1.2	Control	1798-2004							
1.3	Varying climate	1948-2004							
1.4	Varying climate, CO ₂ , and N deposition	1798-2004							
1.5	Varying climate, CO ₂ , N deposition and land use	1798-2004							
1.6	Free Air CO ₂ Enrichment (FACE) Control	1997-2100							
1.7	Free Air CO ₂ Enrichment (FACE) Transient	1997-2100							
	Coupled Land-Atmosphere Forcing with Hadley S	SSTs							
Exp.	Description	Time Period							
2.1	Spin Up	~2,600 y							
2.2	Control	1800-2004							
2.3	Varying climate	1800-2004							
2.4	Varying climate, CO ₂ , and N deposition	1800-2004							
2.5	Varying climate, CO ₂ , N deposition and land use	1800-2004							
2.6	Varying climate, CO_2 , N deposition, seasonal FFE	1800-2004							

All but the land use experiments were run with CCSM3.1 using CLM3-CASA' and CLM3-CN biogeochemistry models yielding >16,000 y and ~ 50 TB of output.

Forrest M. Hoffman, James T. Randerson, et al.

- An evolving document on metrics for model evaluation was developed by the CCSM Biogeochemistry Working Group.
- Each model was <u>scored</u> with respect to its performance compared with best-available observational datasets.
- Examples included:
 - leaf area index (LAI): comparison of phase and spatial distribution using MODIS
 - net primary production (NPP): comparison with EMDI and correlation with MODIS
 - CO₂ seasonal cycle: comparison with NOAA/Globalview flask sites after combining fluxes with impulse response functions from TRANSCOM

▲同 ▶ ▲ 臣 ▶

- regional carbon stocks (Saatchi et al., 2006; Batjes, 2006)
- carbon and energy fluxes (AmeriFlux/Fluxnet sites)
- $\bullet\,$ other transient dynamics: β factor, fire emissions

C-LAMP Resources Protocol Metrics **Results** Future ILAMB Next Steps

- Comparisons with field observations included net primary production (NPP) from the Ecosystem Model-Data Intercomparison (EMDI).
- Measurements were performed in different ways, at different times, and by different groups for a limited number of field sites.
- Shown here are comparisons of NPP with EMDI Class A observations (Figures a and b) and Class B observations (Figures c and d).

Data provided by NASA Distributed Active Archive Center (DAAC) at ORNL

A ■

C-LAMP Resources Protocol Metrics Results Future ILAMB Next Steps

- Comparisons with satellite "modeled observations" must be made carefully because of high uncertainty.
- This comparison with MODIS leaf area index (LAI) focused on the month of maximum LAI (phase), a measurement with less uncertainty than the "observed" LAI values.
- C-LAMP accounted for such uncertainties by weighting scores accordingly.
- CLM-CASA' scored 5.1/6.0 while CLM-CN scored 4.2/6.0 for this metric.

Forrest M. Hoffman, James T. Randerson, et al.

C-LAMP and ILAMB

C-LAMP	Resources	Protocol	Metrics	Results	Future	ILAMB	Next Steps

- MODIS net primary production (NPP)
 "observations" have even higher uncertainty.
- Comparison with MODIS NPP focused on correlation of spatial patterns.
- CLM-CASA' scored 1.6/2.0 while CLM-CN scored 1.4/2.0; however, CN compared better with respect to mean values.

Forrest M. Hoffman, James T. Randerson, et al. C-LAMP and ILAMB

C-LAMP Resources Protocol Metrics Results Future ILAMB Next Steps

- Comparisons with Globalview flask sites were made by combining model fluxes with impulse response functions from TRANSCOM.
- Shown are annual cycles of atmospheric CO₂ at a) Mould Bay, Canada (76°N),
 b) Storhofdi, Iceland (63°N),
 c) Carr, Colorado (41°N),
 d) Azores Islands (39°N),
 e) Sand Island, Midway (28°N), and f) Kumakahi,
 Hawaii (20°N).
- CLM-CASA' scored 10.4/15.0 while CLM-CN scored 7.7/15.0 for this metric.

Forrest M. Hoffman, James T. Randerson, et al.

C-LAMP	Resources	Protocol	Metrics	Results	Future	ILAMB	Next Steps

- Estimates of carbon stocks are very difficult to obtain.
- This comparison with estimates of aboveground live biomass in the Amazon by Saatchi *et al.* (2006) showed that both models are too high by about a factor of 2.
- Using a score based on normalized cell-by-cell differences, CLM-CASA' scored 5.3/10.0 while CLM-CN scored 5.0/10.0.

C-LAMP Resources Protocol Metrics **Results** Future ILAMB Next Steps

- Comparisons with AmeriFlux eddy correlation CO₂ flux tower sites included net ecosystem exchange (NEE), gross primary production (GPP), respiration, shortwave incoming radiation, and latent and sensible heat.
- Shown here is a comparison of model estimates with eddy covariance measurements from Sylvania Wilderness, Harvard Forest, and Walker Branch.
- Level 4 data were used.

Data provided by ORNL Carbon Dioxide Information Analysis Center (CDIAC).

C-LAMP	Resources	Protocol	Metrics	Results	Future	ILAMB	Next Steps

- Additional field measurement comparisons included the Free Air CO₂ Enrichment (FACE) results, including the ORNL site.
- The Norby *et al.* (2005) synthesis of four FACE site observations suggested "response of forest NPP to elevated $[CO_2]$ is highly conserved across a broad range of productivity, with a stimulation at the median of $23 \pm 2\%$."
- A C-LAMP experiment was added to test this result by increasing [CO₂] to 550 ppmv in 1997.

	Lon	Lat	Observa	ations	CASA'			CN		
Site Name	(°E)	(°N)	NPP↑	β_L	NPP↑	β_L	Score	NPP↑	β_L	Score
Duke	-79.08	35.97	28.0%	0.69	16.4%	0.41	0.26	6.2%	0.15	0.65
Aspen	-89.62	45.67	35.2%	0.87	15.6%	0.39	0.39	12.4%	0.31	0.48
ORNL	-84.33	35.90	23.9%	0.59	17.3%	0.43	0.16	5.2%	0.13	0.64
POP-Euro	11.80	42.37	21.8%	0.54	20.0%	0.49	0.04	5.7%	0.14	0.59
	4 site mean 27.2% 0.67			17.3%	0.43		7.4%	0.18		
	Total M Score					0.79			0.41	

But! Norby more recently reported reduced NPP enhancement at the ORNL FACE site due probably to N limitation!

C-LAMP	Resources	Protocol	Metrics	Results	Future	ILAMB	Next Ste
					A / I		CNI

ps

Models ------

(日) (四) (王) (王) (王)

C-LAMP Score Sheet for CLM3-CASA' and CLM3-CN

					oucit				· · ·
Matula	Mateia anno 1994	Uncertainty	Scaling	Total	6	CIEL/		CN	
Metric	Matching MODIS observations	01 0DS.	mismatch	score	Sub-score	12.5		12.0	
LAI	Phase (assessed using the month of maximum I AI)	Low	Low	15.0	6.0	13.5	5.1	12.0	12
	Fhase (assessed using the month of maximum EAT)	Low	Low		5.0		3.1		4.2
	Maximum (derived separately for major biome classes)	Moderate	Low		5.0		4.0		+.3
NDD	Mean (derived separately for major blome classes)	Moderate	Low	10.0	4.0	8.0	3.8		3.3
NPP	Comparisons with field observations and satellite products			10.0		8.0		8.2	
	 Matching EMDI Net Primary Production observations 	High	High		2.0		1.5	1	1.6
	 EMDI comparison, normalized by precipitation 	Moderate	Moderate		4.0		3.0	3	3.4
	 Correlation with MODIS (r²) 	High	Low		2.0		1.6	1	1.4
	 Latitudinal profile comparison with MODIS (r²) 	High	Low		2.0		1.9	1	1.8
CO ₂ annual cycle	Matching phase and amplitude at Globalview flash sites			15.0		10.4		7.7	
	• 60°–90°N	Low	Low		6.0		4.1	2	2.8
	• 30°-60°N	Low	Low		6.0		4.2	3	3.2
	• 0°-30°N	Moderate	Low		3.0		2.1	1	1.7
Energy & CO ₂ fluxes	Matching eddy covariance monthly mean observations			30.0		17.2		16.6	
	 Net ecosystem exchange 	Low	High		6.0		2.5	2	2.1
	 Gross primary production 	Moderate	Moderate		6.0		3.4	3	3.5
	Latent heat	Low	Moderate		9.0		6.4	e	6.4
	Sensible heat	Low	Moderate		9.0		4.9	4	4.6
Transient dynamics	Evaluating model processes that regulate carbon exchange on decadal to century timescales			30.0		16.8		13.8	
	Aboveground live biomass within the Amazon Basin	Moderate	Moderate		10.0		53	4	5.0
	 Sensitivity of NPP to elevated levels of CO_n: comparison 	Low	Moderate		10.0		79	2	4.1
	to temperate forest FACE sites	Low	Woderate		10.0		1.7		Ŧ. I
	 Interannual variability of global carbon fluxes: comparison with TRANSCOM 	High	Low		5.0		3.6	3	3.0
	 Regional and global fire emissions: comparison to GFEDv2 	High	Low		5.0		0.0	1	1.7

Forrest M. Hoffman, James T. Randerson, et al. C-

200

C-LAMP Resources Protocol

Metrics

Results

Future

ILAMB

Next Steps

C-LAMP Output on ESG Gateway at ORNL

Forrest M. Hoffman, James T. Randerson, et al.

C-LAMP and ILAMB

C-LAMP

Resources

Results

Future

Global Change Biology

Global Change Biology (2009) 15, 2462-2484, doi: 10.1111/j.1365-2486.2009.01912.x

Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models

IAMES T. RANDERSON*, FORREST M. HOFFMAN†, PETER E. THORNTON 1/8, NATALIE M. MAHOWALD¶, KEITH LINDSAY‡, YEN-HUEI LEE‡, CYNTHIA D. NEVISON* ||, SCOTT C. DONEY**, GORDON BONAN ±, RETO STÖCKLI^{††}[,]th, CURTIS COVEY§§, STEVEN W. RUNNING¶¶ and INEZ Y. FUNG|||| *Department of Earth System Science, Croul Hall, University of California, Irvine, CA 92697, USA, †Oak Ridge National Laboratory, Computational Earth Sciences Group, PO Box 2008, Oak Ridge, TN 37831, USA, tClimate and Global Dynamics, National Center for Atmospheric Research. PO Box 3000, Boulder, CO 80307, USA, SOak Ridge National Laboratory, Environmental Sciences Division, PO Box 2008, Oak Ridge, TN 37831, USA, "Devartment of Earth and Atmospheric Sciences, 2140 Snee Hall, Cornell University, Ithaca, NY 14850, USA, ||Institute for Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 80309, USA, **Department of Marine Chemistry and Geochemistry, MS 25, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA, ††Department of Atmospheric Sciences, Colorado State University, Ft Collins, CO 80523, USA, ±±MeteoSwiss, Climate Service, Federal Office of Meteorology and Climatology, CH-8044 Zurich, Switzerland, §SProgram for Climate Model Diagnosis and Intercomparison, 7000 East Avenue, Bldg. 170, L-103, Livermore, CA 94550-9234, USA, ¶Numerical Terradynamic Simulation Group, College of Forestry & Conservation, University of Montana, Missoula, MT 59812, USA, ||||Department of Earth and Planetary Science and Department of Environmental Science, Policy, and Management, 307 McCone, Mail Code 4767, University of California, Berkeley, CA 94720, USA

Abstract

With representation of the global carbon cycle becoming increasingly complex in climate models, it is important to develop ways to quantitatively evaluate model performance against *in situ* and remote sensing observations. Here we present a systematic framework, the Carbon-LAnd Model Intercomparison Project (C-LAMP), for assessing terrestrial biogeochemistry models coupled to climate models using observations that span a wide range of temporal and spatial scales. As an example of the value of such comparisons, we used this framework to evaluate two biogeochemistry models that are integrated within the Community Climate System Model (CCSM) – Carnegie-Ames-Stanford Approach' (CASA') and carbon-nitrogen (CN). Both models underestimated the magnitude of net carbon uptake during the growing season in temperate and boreal

Forrest M. Hoffman, James T. Randerson, et al. C-LAMP and ILAMB

- C-LAMP helped drive model improvements in terrestrial biogeochemistry for the Community Land Model (CLM4).
- Subsequent C-LAMP analyses of six model configurations using CLM3.6 (a pre-release version of CLM4) with CASA' and CN demonstrated much improved performance by CN.
- Physical model changes must be tested using C-LAMP to ensure these changes do not negatively impact biogeochemistry model performance.
- C-LAMP helped launch an international community effort to develop land model benchmarks and an open source model evaluation system to support future MIPs, like LBA-MIP, NACP Syntheses, TRENDY, MsTMIP, and CMIP5.

Why Benchmark?

- to show the broader science community and the public that the representation of the carbon cycle in climate models is improving;
- to provide a means, to quantitatively diagnose impacts of model development on carbon cycle and land surface processes;
- to guide synthesis efforts, such as the IPCC, in review of mechanisms of global change in models that are broadly consistent with available contemporary observations;
- to increase scrutiny of key datasets used for model evaluation;
- to identify gaps in existing observations needed for model validation;
- to provide a quantitative, application-specific set of minimum criteria for participation in model intercomparison projects (MIPs);
- to provide an optional weighting system for multi-model mean estimates of future changes in the carbon cycle.

C-LAMP

Protocol

Resources

Metrics

Results

Future

Next Steps

ILAMB

- Meeting Co-organized by Forrest Hoffman (UC-Irvine and ORNL), Chris Jones (UK Met Office Hadley Centre), Pierre Friedlingstein (U. Exeter), and Jim Randerson (UC-Irvine).
- About 45 researchers participated from the United States, Canada, the United Kingdom, the Netherlands, France, Germany, Switzerland, China, Japan, and Australia.

C-LAMP	Resources	Protocol	Metrics	Results	Future	ILAMB	Next Steps

	Annual	Seasonal	Interannual		
	Mean	Cycle	Variability	Trend	Data Source
Atmospheric CO ₂	-		-		
Flask/conc. + transport		\checkmark	✓	\checkmark	NOAA, SIO, CSIRO
TCCON + transport		~	✓	√	Caltech
Fluxnet					
GPP, NEE, TER, LE, H, RN	√	√	√		Fluxnet, MAST-DC
Gridded: GPP	~	√	?		MPI-BGC
Hydrology/Energy					
river flow	√		√		GRDC, Dai, GFDL
global runoff/ocean balance	~				Syed/Famiglietti
albedo (multi-band)		\checkmark	\checkmark		MODIS, CERES
soil moisture		√	√		de Jeur, SMAP
column water		√	√		GRACE
snow cover	~	\checkmark	\checkmark	~	AVHRR, GlobSnow
snow depth/SWE	~	~	√	√	CMC (N. America)
T _{air} & P	~	√	√	√	CRU, GPCP and TRMM
Gridded: LE, H	~	\checkmark			MPI-BGC, dedicated ET
Ecosystem Processes & State					
soil C, N	√				HWSD, MPI-BGC
litter C, N	~				LIDET
soil respiration	~	?	√	√	Bond-Lamberty
FAPAR	 ✓ 	~			MODIS, SeaWIFS
biomass & change	~			~	Saatchi, Pan, Blackard
canopy height	 ✓ 				Lefsky, Fisher
NPP	~				EMDI, Luyssaert
Vegetation Dynamics					
fire — burned area	✓	~	√		GFED3
wood harvest	 ✓ 			✓	Hurtt
land cover	√				MODIS PFT fraction

Forrest M. Hoffman, James T. Randerson, et al.

▲口> ▲圖> ▲注> ▲注>

æ

C-LAMP	Resources	Protocol	Metrics	Results	Future	ILAMB	Next Steps
Next S	Steps						

- Five benchmarks will be implemented initially and used to evaluate existing model results from TRENDY and CMIP5.
- A draft document proposing additional new netCDF Climate and Forecast (CF) conventions, beyond those created for CMIP5, is available for comment.
- Model results will be shared on the Earth System Grid (ESG).
- Future: New protocols and forcing data comparisons.
- A development Wiki is coming soon.
- ILAMB Town Hall meeting at AGU in December.
- Next ILAMB meeting in Beijing, China, in early 2012.

International Land Model Benchmarking (ILAMB) Project http://www.ilamb.org/

<回と < 回と < 回と

Forrest M. Hoffman, James T. Randerson, et al. C-LAMP and ILAMB

C-LAMP	Resources	Protocol	Metrics	Results	Future	ILAMB	Next Steps

Thank you!

Contact: Forrest Hoffman (forrest@climatemodeling.org)

Forrest M. Hoffman, James T. Randerson, et al.

C-LAMP and ILAMB

< • • • •