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Introduction

The Arctic ecosystem is a large permafrost-dominated region with regional cli-mate, ecohydrology and geomorphology that drive a diverse and heterogeneousdistribution of vegetation on the landscape. Using a coordinated modeling andfield/laboratory observations approach, NGEE–Arctic is working to improve ourunderstanding of Arctic ecosystems and how they may evolve in the future.• While resource and logistical constraints limit the extent and frequency of mea-surements, we developed and employed a systematic sampling strategy to ob-jectively represent environmental variability at appropriate spatial and temporalscales.• Using machine learning techniques we combined high resolution satellite datawith field observations to develop high resolution maps of Arctic vegetation.
Representativeness-based Design of Observation Network

NGEE-Arctic Sampling Network Design in AlaskaOur analysis using a suite of 37 climate, edaphic and permafrost characteristics forthe present and projected future conditions (from downscaled GCMs) delineateskey ecoregions in Alaska, and also suggests a northward shift in the environmentalconditions under various climate change scenarios.

1000 km( a ) Present period (2000–2009) 1000 km( b ) Future period (2090–2099)
Figure 1: Environmental conditions and ecoregions in Alaska are expected to
shift northwards under warming climate

With a combination of a northern site at Barrow, Alaska, and a set of southernsites at Seward Peninsula, Alaska, NGEE–Arctic is employing a space-for-timeapproach to sample the regions to best understand the current status of vegetationand implications of a warming climate on these sensitive ecosystems.

1000 km( a ) Barrow Site Representativeness 1000 km( b ) Council Site Representativeness
Figure 2: Quantifying representativeness of observations collected at NGEE-
Arctic cores sites in the context of the broader landscape

Our representativeness analysis allows for quantitative assessment of the opti-mality of the observations and samples being conducted and provides a statisticalscaling framework for extrapolation of these observations to the larger landscape.
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Scaling Understanding to the Pan-Arctic Region

Figure 3: Distributed network of flux observation sites (131) across the Arctic pro-
vides potential for scaling our observations and modeling studies to understand
the broader Pan-Arctic region.

While core field observation campaigns within NGEE-Arctic are focused at a setof cores sites in Alaska, leveraging the work being conducted by other researchgroups across the broader Pan-Arctic region allows scaling of observations andmodels to the larger landscape.

( a ) Currently active sites (93) ( b ) Sites with ≥5 years of data (92)

( c ) Sites measuring CH4 (52) ( d ) Sites operational in winter (53)
Figure 4: Representativeness of Pan-Arctic network of flux measurement sites

Understanding the inventory of observations available through international part-ner networks in the Arctic enables development of new synthesis data productsand models.
Mapping PFT Distributions at BEO

Figure 5: Vegetation community and distribution show wide variations across
polygonal tundra microtopography

Microtopography in continuous permafrost polygonal tundra at the Barrow Envi-ronmental Observatory govern the surface and subsurface hydrology and regulatesoil moisture and soil temperature, which has direct implications for the vegetationcommunity and distributions at sub-meter scales.
Table 1: Remote sensing data used for vegetation mapping with and without phenology.

Number of VariablesVariables (without phenology, with phenology) PlatformElevation 1, 1 LiDARTOA Red Band 1, 6 WorldView-2TOA Blue Band 1, 6 WorldView-2TOA Green Band 1, 6 WorldView-2TOA NIR Band 1, 6 WorldView-2NDVI 1, 6 WorldView-2We employed high resolution spectral remote sensing and digital elevation modelsto develop machine learning models using vegetation community data and develophigh resolution maps of vegetation community distribution. Capturing vegetationphenology using repeat imagery exploits variations in the timing of green up fordifferent vegetation types, allowing improved accuracy in resulting data products.
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Figure 6: High resolution vegetation maps captures vegetation community and
distribution across polygon types
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Arctic Vegetation Mapping at Seward Peninsula

Availability of high resolution remote sensing data in the Arctic is often limiteddue to frequent cloud cover and polar darkness. However, many satellites collectdata using different sensor types, at different resolutions and return frequencies.We developed a multi-sensor data fusion approach to combine the informationcontent from a range of sensor types and resolutions available at the SewardPeninsula for improved mapping of vegetation at high resolution.
Table 2: Spectral and topographic variables used in multi-sensor fusion based
vegetation classifications

Sensor Group Predictor Variable Unit DateALOS-1PALSAR HH γ0 29 August 2007HV γ0SPOT-5 Green, Red, NIR (0.5–0.9 µm) DN June-September 2009 – 2012IfSAR Elevation m July 2012EO-1 198 spectral bands (0.4 to 2.5 µm) DN 24 June 2015Landsat 8 9 spectral bands (0.4 - 2.29 µm) DN 17 August 2016Different satellite sensors are sensitive to different aspects of diverse vegetationon the landscape, and when combined provides a wealth of information.
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Figure 7: Response of various sensors to vegetation characteristics

We developed Deep Neural Network models and trained them with existing veg-etation maps and field based vegetation community data for accurate high reso-lution maps of vegetation.

Figure 8: Deep learning-based multi-sensor fusion approach for vegetation map-
ping
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Figure 9: Deep learning-based vegetation map for Kougarok Watershed at Se-
ward Peninsula
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