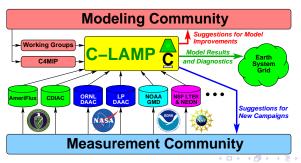
C-LAMP

The Carbon-Land Model Intercomparison Project (C-LAMP): A Prototype for Coupled Biosphere-Atmosphere Model Benchmarking for the IPCC Fifth Assessment Report (AR5)


Forrest M. Hoffman¹, James T. Randerson², Inez Y. Fung³
Peter E. Thornton¹, Natalie M. Mahowald⁴,
Gordon B. Bonan⁵, and Steven W. Running⁶

¹Oak Ridge National Laboratory, ²University of California-Irvine, ³University of California-Berkeley, ⁴Cornell University, ⁵University of Colorado-Boulder, and ⁶University of Montana

6th GEWEX/2nd iLEAPS Parallel Science Conferences
27 August 2009 • Melbourne, Australia

C-LAMP

- The Carbon-Land Model Intercomparison Project (C-LAMP)
 began as a CCSM Biogeochemistry Working Group project to assess
 model capabilities in the coupled climate system and to explore
 processes important for inclusion in the CCSM4 Earth System
 Model for use in the IPCC Fifth Assessment Report (AR5).
- Unlike traditional MIPs, C-LAMP was designed to confront models with best-available observational datasets, develop metrics for evaluation of biosphere models, and build a general-purpose biogeochemistry diagnostics package for model evaluation.

 C-LAMP is a Biogeochemistry Subproject of the Computational Climate Science End Station (Warren Washington, PI), a U.S. Dept. of Energy INCITE Project.

C-LAMP

 Models were initially run on the Cray X1E vector supercomputer in ORNL's National Center for Computational Sciences (NCCS).
 Cray X1E (phoenix)

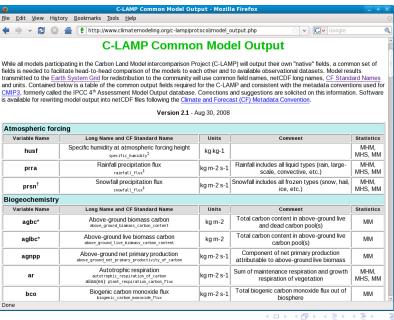
1024 processors (MSPs), 2048 GB memory, and 18.08 TFlop/s peak DECOMMISSIONED September 30, 2008

Present Jaguar: 250 TFlop/s

New Jaguar: Second Fastest in the World at 1.059 PFlop/s

Model Configurations

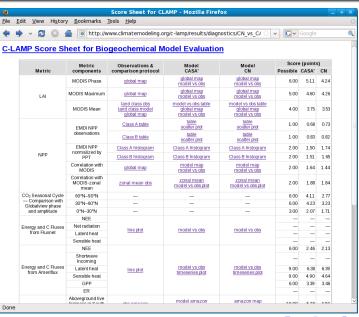
- Biosphere models coupled to the Community Climate System Model version 3.1
 - CLM3-CASA' Carnegie/Ames/Stanford Approach Model previously run in CSM1.4 (Fung)
 - CLM3-CN coupled carbon and nitrogen cycles based on the Biome-BGC model (Thornton)
 - LSX-IBIS Integrated Biosphere Simulator from U.
 Wisconsin previously run in PCTM (Thompson)
- Because LSX-IBIS is not coupled to the CLM3 biophysics and was not a candidate for inclusion in CCSM4, only CLM3-CASA' and CLM3-CN were evaluated in C-LAMP.
- CCSM3.1 partially coupled ("I" & "F" configurations) run at T42 resolution ($\sim 2.8^{\circ} \times 2.8^{\circ}$), spectral Eulerian dycore, $1^{\circ} \times 0.27^{\circ}$ –0.53° ocean & sea ice data models (T42gx1v3).

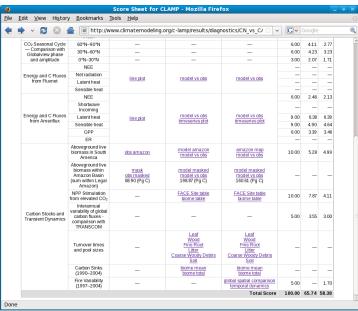

C-LAMP Protocol Overview

- Experiment 1: Models forced with an improved NCEP/NCAR reanalysis climate data set (Qian, et al. 2006) to examine the influence of climate variability, prescribed atmospheric CO₂, and land cover change on terrestrial carbon fluxes during the 20th century (specifically 1948–2004).
- Experiment 2: Models coupled with an active atmosphere (CAM3), prescribed atmospheric CO₂, prescribed sea surface temperatures and ocean carbon fluxes to examine the effect of a coupled biosphere-atmosphere for carbon fluxes and climate during the 20th century.
- All the forcing and observational datasets are being shared, and model results are available through the Earth System Grid (ESG), just like for CMIP3 (the IPCC AR4 model results).
- Experimental protocol, output fields, and metrics are available at http://www.climatemodeling.org/c-lamp/

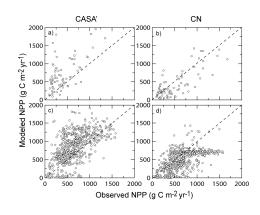
Offline Forcing with NCEP/NCAR Reanalysis						
Exp.	Description	Time Period				
1.1	Spin Up	∼4,000 y				
1.2	Control	1798-2004				
1.3	Varying climate	1948-2004				
1.4	Varying climate, CO ₂ , and N deposition	1798–2004				
1.5	Varying climate, CO_2 , N deposition and land use	1798–2004				
1.6	Free Air CO ₂ Enrichment (FACE) Control	1997–2100				
1.7	Free Air CO ₂ Enrichment (FACE) Transient	1997–2100				

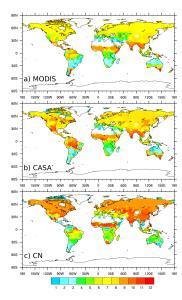
Coupled Land-Atmosphere Forcing with Hadley SSTs					
Exp.	Description	Time Period			
2.1	Spin Up	~2,600 y			
2.2	Control	1800-2004			
2.3	Varying climate	1800-2004			
2.4	Varying climate, CO ₂ , and N deposition	1800-2004			
2.5	Varying climate, CO ₂ , N deposition and land use	1800-2004			
2.6	Varying climate, CO ₂ , N deposition, seasonal FFE	1800-2004			


All but the land use experiments were run with CCSM3.1 using CLM3-CASA' and CLM3-CN biogeochemistry models yielding >16,000 y and \sim 50 TB

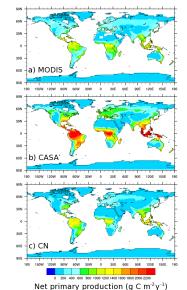


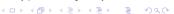
C-LAMP Performance Metrics and Diagnostics


- An evolving document on metrics for model evaluation is available at http://www.climatemodeling.org/c-lamp/
- Each model is scored with respect to its performance on various output fields compared with best-available observational datasets.
- Examples include:
 - leaf area index (LAI): comparison of phase and spatial distribution using MODIS
 - net primary production (NPP): comparison with EMDI and correlation with MODIS
 - CO₂ seasonal cycle: comparison with NOAA/Globalview flask sites after combining fluxes with impulse response functions from TRANSCOM
 - regional carbon stocks (Saatchi et al., 2006; Batjes, 2006)
 - carbon and energy fluxes (Fluxnet sites)
 - ullet other transient dynamics: eta factor, fire emissions

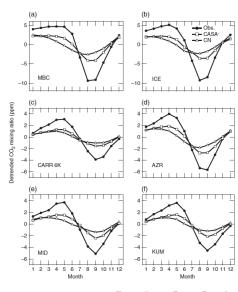

- Comparisons with field observations include net primary production (NPP) from the Ecosystem Model-Data Intercomparison (EMDI).
- Measurements were performed in different ways, at different times, and by different groups for a limited number of field sites.
- Shown here are comparisons of NPP with EMDI Class A observations (Figures a and b) and Class B observations (Figures c and d).

Data provided by NASA Distributed Active Archive Center (DAAC) at ORNL

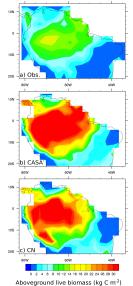

- Comparisons with satellite "modeled observations" must be made carefully because of high uncertainty.
- This comparison with MODIS leaf area index (LAI) focuses on the month of maximum LAI (phase), a measurement with less uncertainty than the "observed" LAI values.
- C-LAMP accounts for this uncertainty by weighting scores accordingly.
- CLM-CASA' scored 5.1/6.0 while CLM-CN scored 4.2/6.0 for this metric.

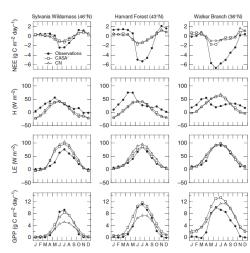


 MODIS net primary production (NPP) "observations" have higher uncertainty.


C-LAMP

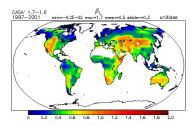
- Comparison with MODIS NPP focuses on correlation of spatial patterns.
- CLM-CASA' scored 1.6/2.0 while CLM-CN scored 1.4/2.0.

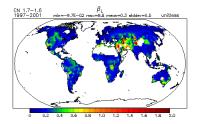

- Comparisons with Globalview flask sites are made by combining model fluxes with impulse response functions from TRANSCOM.
- Shown are the annual cycles of atmospheric CO₂ at (a) Mould Bay, Canada (76°N), (b) Storhofdi, Iceland (63°N), (c) Carr, Colorado (41°N), (d) Azores Islands (39°N), (e) Sand Island, Midway (28°N), and (f) Kumakahi, Hawaii (20°N).
- CLM-CASA' scored 10.4/15.0 while CLM-CN scored 7.7/15.0 for this metric.

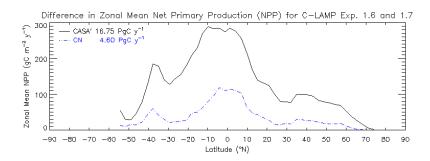

 Estimates of carbon stocks are very difficult to obtain.

C-LAMP

- This comparison with estimates of aboveground live biomass in the Amazon by Saatchi et al. (2006) shows that both models are too high by about a factor of 2.
- Using a score based on normalized cell-by-cell differences, CLM-CASA' scored 5.3/10.0 while CLM-CN scored 5.0/10.0.



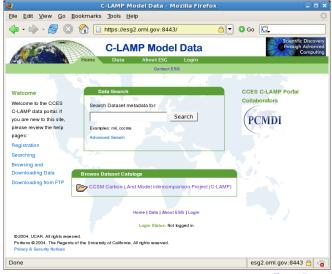

- Comparisons with AmeriFlux eddy correlation CO₂ flux tower sites include net ecosystem exchange (NEE), gross primary production (GPP), respiration, shortwave incoming radiation, and latent and sensible heat.
- Shown here is a comparison of model estimates with eddy covariance measurements from Sylvania Wilderness, Harvard Forest, and Walker Branch.
- Used are the consistent Level 4 data produced by Dario P. and Markus R.


Data provided by ORNL Carbon Dioxide Information Analysis Center (CDIAC).

- Additional field measurement comparisons include the Free Air CO₂ Enrichment (FACE) results, including the ORNL site.
- The Norby *et al.* (2005) synthesis of four FACE site observations suggested "response of forest NPP to elevated [CO₂] is highly conserved across a broad range of productivity, with a stimulation at the median of $23 \pm 2\%$."
- A C-LAMP experiment was added to test this result by increasing [CO₂] to 550 ppmv in 1997.

C-LAMP

	Lon	Lat	Observ	ations	CASA'				CN		
Site Name	(°E)	(°N)	NPP↑	β_L	NPP↑	β_{L}	Score	NPP↑	β_L	Score	
Duke	-79.08	35.97	28.0%	0.69	16.4%	0.41	0.26	6.2%	0.15	0.65	
Aspen	-89.62	45.67	35.2%	0.87	15.6%	0.39	0.39	12.4%	0.31	0.48	
ORNL	-84.33	35.90	23.9%	0.59	17.3%	0.43	0.16	5.2%	0.13	0.64	
POP-Euro	11.80	42.37	21.8%	0.54	20.0%	0.49	0.04	5.7%	0.14	0.59	
	4 si	te mean	27.2%	0.67	17.3%	0.43		7.4%	0.18		
Total M Score					0.79			0.41			


But! Norby is now reporting reduced NPP enhancement at the ORNL FACE site due probably to N limitation!

C-LAMP Score Sheet for CLM3-CASA' and CLM3-CN

		Uncertainty	Scaling	Total					
Metric	Metric components	of obs.	mismatch	score	Sub-score	CASA'		CN	
LAI	Matching MODIS observations			15.0		13.5		12.0	
	 Phase (assessed using the month of maximum LAI) 	Low	Low		6.0		5.1		4.2
	 Maximum (derived separately for major biome classes) 	Moderate	Low		5.0		4.6		4.3
	 Mean (derived separately for major biome classes) 	Moderate	Low		4.0		3.8		3.5
NPP	Comparisons with field observations and satellite products			10.0		8.0		8.2	
	 Matching EMDI Net Primary Production observations 	High	High		2.0		1.5		1.6
	 EMDI comparison, normalized by precipitation 	Moderate	Moderate		4.0		3.0		3.4
	 Correlation with MODIS (r²) 	High	Low		2.0		1.6		1.4
	 Latitudinal profile comparison with MODIS (r²) 	High	Low		2.0		1.9		1.8
CO ₂ annual cycle	Matching phase and amplitude at Globalview flash sites			15.0		10.4		7.7	
	• 60°–90°N	Low	Low		6.0		4.1		2.8
	• 30°-60°N	Low	Low		6.0		4.2		3.2
	• 0°-30°N	Moderate	Low		3.0		2.1		1.7
Energy & CO ₂ fluxes	Matching eddy covariance monthly mean observations			30.0		17.2		16.6	
	Net ecosystem exchange	Low	High		6.0		2.5		2.1
	Gross primary production	Moderate	Moderate		6.0		3.4		3.5
	Latent heat	Low	Moderate		9.0		6.4		6.4
	Sensible heat	Low	Moderate		9.0		4.9		4.6
Transient dynamics	Evaluating model processes that regulate carbon exchange			30.0		16.8		13.8	
	on decadal to century timescales								
	 Aboveground live biomass within the Amazon Basin 	Moderate	Moderate		10.0		5.3		5.0
	. Sensitivity of NPP to elevated levels of CO2: comparison	Low	Moderate		10.0		7.9		4.1
	to temperate forest FACE sites								
	 Interannual variability of global carbon fluxes: 	High	Low		5.0		3.6		3.0
	comparison with TRANSCOM								
	 Regional and global fire emissions: comparison to 	High	Low		5.0		0.0		1.7
	GFEDv2								
			Total:	100.0		65.9		58.3	

Earth System Grid (ESG) Node at ORNL for C-LAMP

Biases and Weaknesses Exposed by the C-LAMP Analysis

- Both models had a low LAI bias in boreal and arctic regions.
 This bias was partially eliminated by a new hydrology model capturing freeze-thaw dynamics.
- Both models had a 1–3 month delay in the timing of maximum LAI. This bias was reduced in CLM3-CN where it was most significant.
- Both models overestimate woody biomass in the Amazon Basin. Carbon comparisons with Malhi et al. (in press) suggest too much allocation to wood. Allocation in CLM3-CN was adjusted to reduce this bias.
- The models differed by a factor of two in annual carbon sinks.
 Both results are compatible with atmospheric budgets given other uncertainties

Biases and Weaknesses Exposed by the C-LAMP Analysis

Both models underestimated the amplitude of the seasonal

- cycle of CO_2 in the northern hemisphere. Adjustment of the Q_{10} for heterotrophic respiration from 2.0 to 1.5 in CLM3-CASA' reduces this bias. Adoption of the same Q_{10} formulation, in place of Lloyd & Taylor, reduces this bias in CLM3-CN. The Q_{10} for maintenance respiration in CLM3-CN was also reduced from 2.0 to 1.5.
- CLM3-CN seasonal cycle was out of phase with observations.
 A new day-length control on photosynthesis mechanism mitigates this bias in CLM3-CN.

C-LAMP Paper in Global Change Biology

Global Change Biology (2009), doi: 10.1111/j.1365-2486.2009.01912.x

Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models

JAMES T. RANDERSON*, FORREST M. HOFFMAN†, PETER E. THORNTON‡§, NATALIE M. MAHOWALD¶, KEITH LINDSAY‡, YEN-HUEI LEE‡, CYNTHIA D. NEVISON*∥, SCOTT C. DONEY*, GORDON BON AN‡, RETO STÖCKLI††'‡‡, CURTIS COVEY§§, STEVEN W. RUNNING¶¶ and INEZ Y. FUNG∥∥

*Department of Earth System Science, Croul Hall, University of California, Irvine, CA 92697, USA, †Oak Ridge National Laboratory, Computational Earth Sciences Group, PO Box 2008, Oak Ridge, TN 37831, USA, †Climate and Global Dynamics, National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA, §Oak Ridge National Laboratory, Environmental Sciences Division, PO Box 2008, Oak Ridge, TN 37831, USA, *Department of Earth and Atmospheric Sciences, 2140 Snee Hall, Cornell University, Ihaaa, NY 14850, USA, ||Ibpstitute for Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 60309, USA, *Department of Marine Chemistry and Geochemistry, MS 25, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA, ††Department of Atmospheric Sciences, Colorado State University, Ft Collins, CO 80523, USA, ††MetoSuiss, Climate Service, Federal Office of Metorology and Climatology, CH-8044 Zurich, Switzerland, SSProgram for Climate Model Diagnosis and Intercomparison, 7000 East Avenue, Bldg. 170, 1–103, Livermore, Ch509-234, USA, ¶Numerical Terradynamic Simulation Group, College of Forestry & Conservation, University of Montana, Missoula, MT 59812, USA, ||Department of Earth and Planetary Science and Department of Environmental Science, Policy, and Management, 307 McCore, Mail Code 4767, Lintersity of Galfornia, Berkeley, CA 94720, USA,

Abstract

With representation of the global carbon cycle becoming increasingly complex in climate models, it is important to develop ways to quantitatively evaluate model performance against in situ and remote sensing observations. Here we present a systematic framework, the Carbon-LAnd Model Intercomparison Project (C-LAMP), for assessing terrestrial biogeochemistry models coupled to climate models using observations that span a wide range of temporal and spatial scales. As an example of the value of such

Recent Progress

- C-LAMP helped drive the development of model improvements in the terrestrial biogeochemistry models for the Community Land Model version 4 (CLM4).
- Subsequent C-LAMP analyses of six model configurations using CLM3.6 (a pre-release version of CLM4) with CASA' and CN demonstrated much improved performance by CN.
- It is now recognized that physical model changes must be tested using C-LAMP to ensure that these changes do not have negative impacts on biogeochemistry model performance.
- While our recent proposal to deploy C-LAMP as a web service was not funded, we are sharing the data and diagnostics package for others to use (e.g., Jena's JEDI model) and hoping to incorporate additional metrics over time.
- Next: N-LAMP develop a strategy for benchmarking the nitrogen cycle in land surface models.

C-LAMP, C⁴MIP, and iLEAPS

- C-LAMP Experiment 2 is patterned after C⁴MIP (Coupled Climate-Carbon Cycle Model Intercomparison Project, http://www.c4mip.cnrs-gif.fr/) Phase 1.
- At the October 2006 C⁴MIP Workshop at the UK Met Office in Exeter, there was strong interest in Experiment 1 and validation experiments using Fluxnet observations.
- At the Marie Curie/iLEAPS Workshop in Hyères in November 2008, a number of modeling groups expressed interest in consistent model validation and model-data comparisons for their coupled biosphere models. See write up in iLEAPS Newsletter number 7.
- A QUEST/GLASS model benchmarking workshop was held in June 2009 at the University of Exeter where a strategy was discussed for combining Australian, European, and U.S. efforts toward a truly international benchmarking system.

$C-LAMP + ILAMB + \cdots$

- We believe that C-LAMP and ILAMB should serve as a prototype for a wider international benchmarking activity, the results of which could contribute to AR5.
- Needed are
 - a well-crafted protocol that exercises model capabilities for simulating energy, water, and biogeochemical cycles;
 - model output data and metadata standards to simplify subsequent analyses;
 - best-available forcing data sets; and
 - best-available observational data sets and diagnostics.
- Follow-on discussions should be held by carbon cycle researchers at ICDC8 in Jena in September.
- We could finalize the protocol, output standards, metrics and diagnostics, and relationship to AR5 simulations at a meeting in Spring 2010 in the U.S.

Thank you!

Questions?

More Discussion?

