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What is a Benchmark?
● A benchmark is a quantitative test of model function 

achieved through comparison of model results with 
observational data

● Acceptable performance on a benchmark is a necessary 
but not sufficient condition for a fully functioning 
(empirical or machine learning) model

● Functional relationship benchmarks offer tests of 
model responses to forcings and yield insights into 
ecosystem processes

● Effective benchmarks must draw upon a broad set of 
independent observations to evaluate model 
performance at multiple scales

Models often fail to capture the amplitude of 
the seasonal cycle of atmospheric CO2

Models may reproduce correct responses over 
only a limited range of forcing variables
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Why Benchmark Models?
● To quantify and reduce uncertainties in carbon cycle feedbacks to improve projections 

of future climate change (Eyring et al., 2019; Collier et al., 2018)

● To quantitatively diagnose and intercompare model, surrogate, and emulator Earth 
system process representations and their interactions

● To guide synthesis efforts, such as the Intergovernmental Panel on Climate Change 
(IPCC), by determining which models are broadly consistent with available observations 
(Eyring et al., 2019)

● To increase scrutiny of key datasets used for model evaluation

● To identify gaps in existing observations needed to inform model development, 
parameter optimization, and machine learning training

● To accelerate delivery of new measurement datasets for rapid and widespread use in 
model assessment



What is ILAMB?
A community coordination activity created to:

● Develop internationally accepted benchmarks for 
land model performance by drawing upon collaborative 
expertise

● Promote the use of these benchmarks for model 
intercomparison

● Strengthen linkages between experimental, remote 
sensing, and Earth system modeling communities in 
the design of new model tests and new measurement 
programs

● Support the design and development of open source 
benchmarking tools

Energy and Water Cycles

Carbon and Biogeochemical Cycles



● First ILAMB Workshop was held in Exeter, UK, on June 22–24, 2009
● Second ILAMB Workshop was held in Irvine, CA, USA, on January 24–26, 2011

○ ~45 researchers participated from the US, Canada, UK, Netherlands, France, Germany, 
Switzerland, China, Japan, and Australia

○ Developed methodology for model-data comparison and baseline standard for performance of 
land model process representations (Luo et al., 2012)



A Framework for Benchmarking Land Models

(Luo et al., 2012)

● A benchmarking framework for 
evaluating land models emerged and 
included (1) defining model aspects to 
be evaluated, (2) selecting benchmarks 
as standardized references, (3) 
developing a scoring system to 
measure model performance, and (4) 
stimulating model improvement

● Based on this methodology and prior 
work on the Carbon-LAnd Model 
Intercomparison Project (C-LAMP) 
(Randerson et al., 2009), a prototype 
model benchmarking package was 
developed for ILAMB



Third ILAMB Workshop was held May 16–18, 2016
● Workshop Goals

○ Design of new metrics for model benchmarking
○ Model Intercomparison Project (MIP) evaluation needs
○ Model development, testbeds, and workflow processes
○ Observational datasets and needed measurements

● Workshop Attendance
○ 60+ participants from Australia, Japan, China, Germany, 

Sweden, Netherlands, UK, and US (10 modeling centers)
○ ~25 remote attendees at any time

2016 International Land Model Benchmarking (ILAMB) Workshop
May 16–18, 2016, Washington, DC

(Hoffman et al., 2017)



Development of ILAMB Packages
● ILAMBv1 released at 2015 AGU Fall Meeting Town 

Hall, doi:10.18139/ILAMB.v001.00/1251597

● ILAMBv2 released at 2016 ILAMB Workshop, 
doi:10.18139/ILAMB.v002.00/1251621

● Open Source software written in Python; runs in 
parallel on laptops, clusters, and supercomputers

● Routinely used for land model evaluation during 
development of ESMs, including the E3SM Land 
Model (Zhu et al., 2019) and the CESM Community 
Land Model (Lawrence et al., 2019)

● Models are scored based on statistical comparisons 
and functional response metrics

https://dx.doi.org/10.18139/ILAMB.v001.00/1251597
https://dx.doi.org/10.18139/ILAMB.v002.00/1251621


ILAMB Produces Diagnostics and Scores Models
● ILAMB generates a top-level portrait plot of models scores
● For every variable and dataset, ILAMB can automatically produce

○ Tables containing individual metrics and metric scores (when relevant to the data), including
■ Benchmark and model period mean
■ Bias and bias score (Sbias)
■ Root-mean-square error (RMSE) and RMSE score (Srmse)
■ Phase shift and seasonal cycle score (Sphase)
■ Interannual coefficient of variation and IAV score (Siav)
■ Spatial distribution score (Sdist)
■ Overall score (Soverall)

○ Graphical diagnostics
■ Spatial contour maps
■ Time series line plots
■ Spatial Taylor diagrams (Taylor, 2001)

● Similar tables and graphical diagnostics for functional relationships



ILAMBv2.7 Package Current Variables
● Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED3), 

CO2 (NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, GBAF), Leaf area index 
(AVHRR, MODIS), Global net ecosystem carbon balance (GCP, Khatiwala/Hoffman), Net 
ecosystem exchange (Fluxnet, GBAF), Ecosystem Respiration (Fluxnet, GBAF), Soil C 
(HWSD, NCSCDv22, Koven)

● Hydrology: Evapotranspiration (GLEAM, MODIS), Evaporative fraction (GBAF), Latent heat 
(Fluxnet, GBAF, DOLCE), Runoff (Dai, LORA), Sensible heat (Fluxnet, GBAF), Terrestrial 
water storage anomaly (GRACE), Permafrost (NSIDC)

● Energy: Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES, 
GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, Fluxnet, GEWEX.SRB, 
WRMC.BSRN)

● Forcing: Surface air temperature (CRU, Fluxnet), Diurnal max/min/range temperature 
(CRU), Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA), 
Surface down SW/LW radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)



● Improvements in mechanistic treatment 
of hydrology, ecology, and land use with 
much more complexity in Community 
Land Model version 5 (CLM5)

● Simulations improved even with 
enhanced complexity

● Observational datasets not always 
self-consistent

● Forcing uncertainty confounds 
assessment of model development

ILAMB Assessing Several Generations of CLM

http://webext.cgd.ucar.edu/I20TR/_build_set1F/
(Lawrence et al., 2019)

http://webext.cgd.ucar.edu/I20TR/_build_set1F/index.html
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CMIP5 vs. CMIP6 Models
● The CMIP6 suite of land models (right) 

has improved over the CMIP5 suite of 
land models (left)

● The multi-model mean outperforms 
any single model for each suite of 
models

● The multi-model mean CMIP6 land 
model is the “best model” overall

● Why did CMIP6 land models improve?

(Hoffman et al., in prep)





Gross Primary Productivity
● Multimodel GPP is compared with global 

seasonal GBAF estimates

● We can see
Improvements
across generations
of models (e.g.,
CESM1 vs. CESM2,
IPSL-CM5A vs. 6A)

● The mean CMIP6
and CMIP5 models
perform best

Spatial Taylor Diagram





Reasons for Land Model Improvements
ESM improvements in climate forcings (temperature, precipitation, radiation) likely 
partially drove improvements exhibited by land carbon cycle models

(Hoffman et al., in prep)



Reasons for Land Model Improvements

Differences in bias 
scores for 
temperature, 
precipitation, and 
incoming radiation 
were primarily 
positive, further 
indicating more 
realistic climate 
representation

(Hoffman et al., in prep)



Across all land models, scores for most state and flux variables improved (216) or 
remained nearly the same (202), although some were degraded (74). While 
atmospheric forcings from CMIP6 ESMs were improved over those from CMIP5 
ESMs, the largest improvements were in land model variable-to-variable 
relationships, suggesting that increased land model development was also 
partially responsible for higher CMIP6 land model scores.



Reasons for Land Model Improvements

While forcings got better, the largest 
improvements were in 
variable-to-variable relationships, 
suggesting that increased land model 
complexity was also partially responsible 
for higher CMIP6 model scores



● (a) ILAMB and (b) IOMB have been used to 
evaluate how land and ocean model 
performance has changed from CMIP5 to CMIP6

● Model fidelity is assessed through comparison 
of historical simulations with a wide variety of 
contemporary observational datasets

● The UN’s Intergovernmental Panel on Climate 
Change (IPCC) Sixth Assessment Report (AR6) 
from Working Group 1 (WG1) Chapter 5 contains 
the full ILAMB/IOMB evaluation as Figure 5.22

         ...

         ...

ILAMB & IOMB CMIP5 vs 6 Evaluation



Watershed Model Benchmarking

● Recent development in ILAMB enables 
benchmarking for watershed models such as 
the Advanced Terrestrial Simulator (ATS), Soil 
Water Assessment Tool (SWAT), and National 
Water Model (NWM)

● Allows intercomparison of routed and 
un-routed models with observations
○ Routed models: read hydrographs from model 

output corresponding to gauge stations
○ Un-routed models: integrate flow over 

contributing area (via Shapefile, GeoJSON, etc.) 
corresponding to USGS gauge station

Assesses multiple models, 
using a suite of statistical 
metrics, compared to a 
collection of standardized 
reference datasets

ILAMB automatically 
downloads observed 
runoff from USGS servers 
and remote sensing data 
from NASA AppEEARS



Leveraging Advances in Machine Learning for Earth Sciences
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Existing machine learning techniques can improve understanding of Earth system 
processes and their representations in Earth system models



Machine Learning for Understanding Biospheric Processes
● Widening adoption of deep neural networks and growth of climate data are fueling interest 

in AI/ML for use in weather and climate and Earth system models
● ML potential is high for improving predictability when (1) sufficient data are available for 

process representations and (2) process representations are computationally expensive
● Example methods for improving ELM capabilities

by exploring ML and information theory
approaches:
○ Soil organic carbon & radiocarbon
○ Wildfire 
○ Methane emissions
○ Ecohydrology

● All of these applications involve
unresolved, subgrid-scale
processes that strongly influence
results at the largest scales



Hybrid ML-/Process-based Modeling for Terrestrial Modeling
Individual processes can be 
represented in a 
multi-hypothesis approach, 
and ML provides an 
opportunity for (1) a model 
surrogate module or (2) a 
data-derived module that 
can be further explored or 
used to calibrate other 
hypotheses, when sufficient 
data are available.

(Fisher and Koven, 2020)



Hybrid Modeling of Photosynthesis and Ecohydrology
● Significant leaf-level data may be used to 

train ML parameterizations to improve 
accuracy and computational performance

● Estimated stomatal conductance vs. 
measured stomatal conductance for (a) 
Ball-Berry, (b) Medlyn, (c) Random forest (with 
Medlyn inputs), and (d) Random forest with 
all inputs from Lin et al. (2015)

● Inputs to the Medlyn parameterization are 
leaf-level CO2, photosynthesis, and vapor 
pressure deficit

● Random forest trained on these three inputs 
(c) performs slightly better than Medlyn

● Random forest trained on more variables (d) 
achieves an R2 of 0.98

(Massoud, Collier, et al. in prep)

(a) (b)

(c) (d)



Hybrid Modeling of Photosynthesis and Ecohydrology

● For example, we can see such 
discontinuities at right for 
Random Forest in the VPD vs. 
photosynthesis heat map for 
stomatal conductance

● These discontinuities are likely to 
have numerical consequences 
when attempting to couple a ML 
parameterization into a hybrid 
empirical / ML Earth system 
model

(Massoud, Collier, et al. in prep)

● Most process-based or empirical formulations are continuous
● But ML formulations may exhibit discontinuities in the multi-dimensional space of inputs 

because of out-of-sample data or artifacts of sampling or precision



Forecasting River Ice Breakup using LSTM

● Study sites were selected at long term 
river ice monitoring stations in the 
Yukon river basin

● We developed Long Short Term 
Memory (LSTM) models to predict
river ice breakups

● Primary predictor variables: daily 
min/max air temp., precipitation, snow 
water equiv., shortwave radiation

● Datasets: DAYMET, CanESM5 
(Historical, SSP119, SSP370, SSP585, 
SSP534-over)



Break-up date predictions for historical period Break-up date predictions under future scenarios

The ML model predicted river ice break-up dates within 
1–14 days of observed dates

Projections suggested increasingly early break-up 
of river ice under warming scenarios



https://cmec.llnl.gov/

https://cmec.llnl.gov/


LMT Dashboard: https://lmt.ornl.gov/unified-dashboard/

● Tooltips: show scores when mouse hovers the cells.
● Column Hiding: hide some models (columns) to focus into models of interest.
● Column sorting: sort the scores along the columns/models to see the best metric for the model.

Moveable columns

Different colors for 
model groups

Clickable cell 
linking to metric 
page

Show/hide side menu 
containing multiple 
functions

Hyperdimension 
selection

Scale/Normalize cell 
values  along the row 
or column direction 
and color mappings

Multiple switches to 
toggle features

Save the dashboard to 
a plain html file

Collapse and expand 
Children rows

Open local json 
files

Show/Hide  cell 
values 

https://lmt.ornl.gov/unified-dashboard


Convert other diagnostic results for use in LMT dashboard

PMP: The Program for Climate Model Diagnostics and 
Intercomparison (PCMDI) Metrics Package (PMP)

● Clicking cell will go to maps of geographic distributions 
generated by PMP

● Our LMT dashboard can be used to study science 
questions like ENSO-BGC feedbacks

https://lmt.ornl.gov/tab_pmp

https://lmt.ornl.gov/tab_pmp


Summary
● Model benchmarking is increasingly important as model complexity increases
● Systematic model benchmarking is useful for

○ Verification – during model development to confirm that new model code improves performance in a targeted 
area without degrading performance in another area

○ Validation – when comparing performance of one model or model version to observations and to other models 
or other model versions

● The same benchmarking approach applies whether using empirical/process-based, 
machine learning, or hybrid models; more process-level benchmarks are needed

● The ILAMB package employs a suite of in situ, remote sensing, and reanalysis datasets 
to comprehensively evaluate and score land model performance, irrespective of any model 
structure or set of process representations

● ILAMB is Open Source, is written in Python, runs in parallel on laptops to 
supercomputers, and has been adopted in most modeling centers

● Usefulness of ILAMB depends on the quality of incorporated observational data, 
characterization of uncertainty, and selection of relevant metrics



Questions?
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