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Next-Generation Ecosystem Experiments (NGEE Arctic)
http://ngee.ornl.gov/
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Integrating Across Scales

» NGEE Arctic process studies and observations are strongly linked to model
development and application for improving process representation,
initialization, calibration, and evaluation.

> A hierarchy of models will be deployed at fine, intermediate, and climate
scales to connect observations to models and models to each other in a
quantitative up-scaling and down-scaling framework.

Hydrologic and Geomorphic Features at Multiple Scales. At the scale of (A) a high-resolution ESM, (B) a single ESM grid cell, (C) a2 X 2 km
domain of high-resolution Light Detection and Ranging (LiDAR) topographic data, and (D) polygonal ground. Yellow outlines in panel A show
geomorphologically stable hydrologic basins, connected by stream channels (blue). Colored regions in panels B and C show multiple drained thaw
lake basins within a single 10 x 10 km grid cell (B) or a 2 x 2 km domain (C), with progressively more detailed representation of stream channels
(blue). Colors in panel D represent higher (red) to lower (green) surface elevations for a fine-scale subregion, with very fine drainage features
(white). [Los Alamos National Laboratory, University of Alaska Fairbanks, and University of Texas at El Paso]

100 Meters




Quantitative Sampling Network Design

» Resource and logistical constraints limit the frequency and extent of
observations, necessitating the development of a systematic sampling
strategy that objectively represents environmental variability at the
desired spatial scale.

» Required is a methodology that provides a quantitative framework for
informing site selection and determining the representativeness of
measurements.

» Multivariate spatiotemporal clustering (MSTC) was applied at the
landscape scale (4 km?) for the State of Alaska to demonstrate its
utility for representativeness and scaling.

» An extension of the method applied by Hargrove and Hoffman for
design of National Science Foundation's (NSF's) National Ecological
Observatory Network (NEON) domains (Schimel et al., 2007; Keller
et al., 2008).



Table: 37 characteristics averaged for the present (2000-2009) and the future
(2090-2099).

Description Number/Name Units Source
Monthly mean air temperature 12 °C GCM
Monthly mean precipitation 12 mm GCM
mean day of year GCM
Day of freeze standard deviation days
mean day of year GCM
Day of thaw standard deviation days
. mean days GCM
Length of growing season standard deviation days
Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 °C GIPL
Mean annual ground temperature 1 oC GIPL

at bottom of active layer
Mean annual ground surface tem-

1 °C GIPL
perature
Thermal offset 1 °C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM




10 Alaska Ecoregions, Present and Future

2000-2009 2090-2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in color
represents an environmental change between the present and the future.
At this level of division, the conditions in the large boreal forest become
compressed onto the Brooks Range and the conditions on the Seward
Peninsula “migrate” to the North Slope.



20 Alaska Ecoregions, Present and Future

2000-2009 2090-2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in color
represents an environmental change between the present and the future.
At this level of division, the two primary regions of the Seward Peninsula
and that of the northern boreal forest replace the two regions on the North
Slope almost entirely.



50 and 100 Alaska Ecoregions, Present

k =50, 2000-2009 k = 100, 2000-2009
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in color
represents an environmental change between the present and the future.
At high levels of division, some regions vanish between the present and
future while other region representing new combinations of environmental
conditions come into existence.



NGEE Arctic Site Representativeness

» This representativeness analysis uses the standardized n-dimensional
data space formed from all input data layers.

» In this data space, the Euclidean distance between a sampling location
(like Barrow) and every other point is calculated.

» These data space distances are then used to generate grayscale maps
showing the similarity, or lack thereof, of every location to the
sampling location.

» In the subsequent maps, white areas are well represented by the
sampling location or network, while dark and black areas as poorly
represented by the sampling location or network.

» This analysis assumes that the climate surrogates maintain their
predictive power and that no significant biological adaptation occurs in
the future.



Present Representativeness of Barrow or “Barrow-ness”

1000 km

R g T &
(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions are
poorly represented by the sampling location listed in red.



Present vs. Future Barrow-ness

q A
L .

2000-2009 2090-2099
(Hoffman et al., 2013)

As environmental conditions change, due primarily to increasing
temperatures, climate gradients shift and the representativeness of Barrow
will be reduced in the future.



Network Representativeness: Barrow + Council

+Toolik Lake

+Ivotuk

1000 km

(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions are
poorly represented by the sampling location listed in red.



State Space Dissimilarities: 8 Sites, Present (2000-2009)

Table: Site state space dissimilarities for the present (2000-2009).

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 9.13 453 590 5.87 7.98 3.57 12.16

Council 8.69 6.37 7.00 2.28 8.15 5.05
Atgasuk 5.18 5.23 7.79 1.74 10.66
Ivotuk 1.81 5.83 4.48 7.90
Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57
Prudhoe Bay 10.38

(Hoffman et al., 2013)



State Space Dissimilarities: 8 Sites, Present and Future

Table: Site state space dissimilarities between the present (2000-2009) and the
future (2090-2099).

Future (2090-2099)

Toolik Prudhoe
Sites Barrow Council Atqasuk lvotuk Lake Kougarok Bay Fairbanks
N Barrow 3.31 9.67 4.63 6.05 5.75 9.02 3.69 11.67
§| Council 838 1.65 8.10 591 6.87 3.10 7.45 5.38
< Atqasuk 6.01 9.33 242 546 5.26 8.97 2.63 10.13
S lvotuk 7.06 7.17 583 153 2.05 7.25 4.87 7.40
& Toolik Lake 7.19 7.67 6.07 248 1.25 7.70 5.23 8.16
% Kougarok 7.29  3.05 6.92 557 6.31 2.51 6.54 5.75
& Prudhoe Bay 5.29 8.80 3.07 4.75 4.69 8.48 1.94 9.81
a Fairbanks 12.02 5.49 10.36 7.83 8.74 6.24 10.10 1.96

(Hoffman et al., 2013)



Representativeness: A Quantitative Approach for Scaling

» MSTC provides a quantitative framework for stratifying sampling
domains, informing site selection, and determining representativeness
of measurements.

» Representativeness analysis provides a systematic approach for
up-scaling point measurements to larger domains.

RESEARCH ARTICLE

Representativeness-based sampling network design
for the State of Alaska

Forrest M. Hoffman - Jiendra Kumar -
Richard T, Mils - Wikiam W, Hargrove

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W.
Hargrove (2013), “Representativeness-Based Sampling
Network Design for the State of Alaska.” Landscape
Ecol., 28(8):1567-1586. doi:10.1007/s10980-013-9902-0.
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Barrow Environmental Observatory (BEO)

Phenology Representativeness

July 26, 2010 Representativeness
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(Langford et al., in review)

Representativeness map for vegetation sampling points in A, B, C, and D sampling
area with phenology (left) and without (right), based on WorldView2 satellite
images for the year 2010 and LiDAR data.



Barrow Environmental Observatory (BEO)

Mosses Wet Tundra Graminoid Lichen

Deciduous Shrubs
Doty
LS

Y S S o

(Langford et al., in review)

Example plant functional type (PFT) distributions scaled up from vegetation
sampling locations.



ForestGEO Network Global Representativeness

: p
(Anderson-Teixeira et al., 2015)

Map illustrating ForestGEO network representation of 17 bioclimatic, edaphic, and
topographic conditions globally. Light-colored regions are well represented and
dark-colored regions are poorly represented by the ForestGEO sampling network.
Stippling covers non-forest areas.


http://dx.doi.org/10.1111/gcb.12712

Triple-Network Global Representativeness

RAINFOR

(Maddalena et al., in prep)

Map indicates which sampling network offers the most representative coverage at
any location. Every location is made up of a combination of three primary colors
from Fluxnet (red), ForestGEO (green), and RAINFOR (blue).



The USDA Forest Service, NASA Stennis Space Center, DOE Oak Ridge
National Laboratory, and DOI Eros Data Center have created a system to
monitor threats to U.S. forests and wildlands:

» Tier 1: Strategic — The ForWarn system that routinely monitors wide
areas at coarser resolution, repeated frequently — a change detection

system to produce alerts or warnings for particular locations may be of
interest

» Tier 2: Tactical — Finer resolution airborne overflights and ground
inspections of areas of potential interest — Aerial Detection Survey
(ADS) monitoring to determine if such warnings become alarms

Tier 2 was in place and managed by the USDA Forest Service, but Tier 1

was needed to optimally direct its labor-intensive efforts and discover new
threats sooner.



> To detect vegetation
disturbances, the current NDVI
measurement is compared with
the normal, expected baseline
for the same location.

» Substantial decreases from the
baseline represent potential
disturbances.

> Any increases over the baseline
may represent vegetation
recovery.

» Maximum, mean, or median f : 2009 Forest Tent
. . t Y Caterpillar Defoliation
NDVI may provide a suitable :
baseline value.
June 10-23, 2009, NDVI is loaded into
blue and green; maximum NDVI from

2001-2006 is loaded into red (Hargrove
et al., 2009).




% Change in NDVI
- 61% to -99%

ForWarn is a forest change recognition and tracking system that uses high-frequency,
moderate resolution satellite data to provide near real-time forest change maps for the
continental United States that are updated every eight days. Maps and data products are
available in the Forest Change Assessment Viewer at
http://forwarn.forestthreats.org/fcav/


http://forwarn.forestthreats.org/fcav/

NCSU EDictionary &Merriam-Webster [~ T —

Forest Change Assessment Viewer -
ery ° . CONUS Vegetation
[=] B OERHEOEO PeueM imigery 1' col 2
T, B e g :

onitoring Tools
-

g i v
disturbances)

A s
0 cunent jul28_aug20-t4- 0
O previous1_jul20_aug12.tif &
O previous2_jul12_augé.tit &

R
Sl it e

Ghange from 3-Year Baseline (<3-Yr old
disturbances)

O current_jul28_aug20.tit &
O previous1_jui20_augi2 ur &

O previous2_jul12_augé tit &

Early Detect (ALC) Change from previoug(


http://www.ornl.gov/ornl/news/features/2013/forwarn-researchers-get-everest-sized-look-at-woodland-disturbances

Clustering MODIS NDVI to Produce Phenoregions

» Hoffman and Hargrove previously used k-means clustering to detect brine
scars from hyperspectral data (Hoffman, 2004) and to classify phenologies
from monthly climatology and 17 years of 8 km NDVI from AVHRR (White
et al., 2005).

» This data mining approach requires high performance computing to analyze
the entire body of the high resolution MODIS NDVI record for the
continental U.S.

» >101B NDVI values, consisting of ~146.4M cells for the CONUS at 250 m
resolution with 46 maps per year for 15 years (2000-2014), analyzed using
k-means clustering.

» The annual traces of NDVI for every year and map cell are combined into one
395 GB single-precision binary data set of 46-dimensional observation vectors.

» Clustering yields 15 phenoregion maps in which each cell is classified into one
of k phenoclasses that represent prototype annual NDVI traces.



50 Phenoregions for year 2012 (Random Colo




50 Phenoregion Prototypes (Random Colors)
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50 Phenoregions Mode (Random Colors)




50 Phenoregions Max Mode (Random Color




50 Phenoregions Max Mode (Similarity Colors)




50 Phenoregions Max Mode (Similarity Colors Legend)
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Phenoregions Clearinghouse

|| National Phenological £ %
‘ * z [ { biegs://www.geobabble.org/phenoregions/

National Phenological Ecoregions (2000-2011)

William W. Hargrave, Farrest M. Hoffman, Jitendra Kumar, Joseph P. Spruce, and Richard T. Mills
January 14, 2013

Jump to 50 National Phenoregions
Jump to 100 National Phenoregions
Jump to 200 National Phenoregions
Jump to 500 National Phenoregions

Jump to 1000 National Phenoregions

Jump to 5000 National Phenoregions

50 Most-Different National Phenological Ecoregions (2000-2011)
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Biogeochemistry—Climate Feedbacks SFA Diagram
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What is ILAMB?

» The International Land Model
Benchmarking (ILAMB) project seeks
to develop internationally accepted
standards for land model evaluation.
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» Model benchmarking can diagnose
impacts of model development and
guide synthesis efforts like IPCC.
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» Effective benchmarks must draw upon
a broad set of independent observations
to evaluate model performance on
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Bias for LAI (unitless): CLM45bgc_GSWP3 against MODIS, 2000-2005
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» We co-organized inaugural meeting and ~45 researchers participated from the United
States, Canada, the United Kingdom, the Netherlands, France, Germany, Switzerland,
China, Japan, and Australia.

» ILAMB Goals: Develop internationally accepted benchmarks for model performance,
advocate for design of open-source software system, and strengthen linkages between
experimental, monitoring, remote sensing, and climate modeling communities.

» Methodology for model—-data comparison and baseline standard for performance of land
model process representations (Luo et al., 2012).
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Benchmarking Metholdology (Luo et al., 2012)

» Based on this
methodology and
prior work in
C-LAMP, we
developed a new
model

benchmarking
package for ILAMB.

» Prototype is ready
for use in NCL and
a new version is
under development
using python.

Process
* Biophysics
* Hydrology

Parameter
* State variables
* Rate variables

Yy
* \legetation dynamics

* Feedback

\

-~
-

Benchmarks
* Observations

* Experimental results
* Data-model products
* Relationship and patterns

+ Temporal scale
* Spatial cover
* Error structure

~ |

b

Metrics of performance skills

« A priori thresholds ‘To determine model’s
* Scoring systems ‘= Acceptability
considering weights for - Ranking

different processes and / i. Strength and deficiency
data sets

(Luo et al., 2012)
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ILAMB Prototype developed by Mingquan Mu at UCI

> Assesses 24 variables in 4 categories frm ~45 datasets

» aboveground live biomass, burned area, carbon dioxide, gross primary
production, leaf area index, global net ecosystem carbon balance, net
ecosystem exchange, ecosystem respiration, soil carbon

> evapotranspiration, latent heat, terrestrial water storage anomaly

» albedo, surface upward SW radiation, surface net SW radiation, surface
upward LW radiation, surface net LW radiation, surface net radiation,
sensible heat

» surface air temperature, precipitation, surface relative humidity, surface
downward SW radiation, surface downward LW radiation

» Graphics and scoring system

» annual mean, bias, RMSE, seasonal cycle, spatial distribution,
interannual coefficient of variation, spatial distribution, long-term trend

» Software is available at
http://redwood.ess.uci.edu/mingquan/www/ILAMB/index.html
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http://redwood.ess.uci.edu/mingquan/www/ILAMB/index.html

ILAMB Prototype: Global Variables for 12 Models

Global Variables (Info for Weightings)
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Global Variables (Info for Weightings)
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Scoring for Global GPP from Fluxnet-MTE

Diagnostic Summary for Gross Primary Productivity: Model vs. FLUXNET-MTE

Global Patterns segionaland Scoring ([nfo)
% Biss PgChr)  RMSE (PeC/mon) % Reeional Means Global Bias RMSE Seasonal Cycle nifmn . Overall
B""T‘;;‘ﬂg’@&‘ 1184 B - 00 access to plats B - - - B
MeanModel 1453 access to plats 017
beeesml-1-m 1144 40 60 02 access to plats 072 064 0.80 0.80 074
BNU-ESM 1020 164 62 01 access to plats 069 066 078 081 073
CanESMZ 1202 108 13 08 access to plats. 064 060 068 070 064
CESML-BGC 1303 s 58 05 access to plots 069 065 076 087 or
GEDLESM2G 1751 6.7 98 access to ploss 066 073 083 056
Had GEM2 ES 159 275 7.4 03 access to plats 065 079 0.68
inmema uia 20 55 03 access to plats [x 056 018 083 o
IPSL-CM5A-LR 166.6 482 8.8 04 access to plots. 0.63 0.56 0.77 0.84 0.67
MIROCESM 117 62 access toplots 072 066 074 086 on
MPIESM-LR 169.9 access to plots. 0.67
MRLESMI 2361 117 125 02 access to plats 045 043 019 050 PEN
NorE SM1-ME 1304 120 65 05 access to plats. 0.66 062 076 081 070

Notes: In calculating overall score, rmse score contributes double in comparison with all other scores.
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Annual Mean Global GPP

Annual Mean for GPP (gC/m2/day): FLUXNET-MTE, 10822005

Models vs. FLUXNET-MTE
Annusl Mosn for GPP (gC/m2/day): Meanhodel, 1962-2005

Annusl Mean for GPP (gC/m2/day): bee-csmi1-1-m, 1982-2005

150W120W SOW 6OW 30W O WE BOE 9OE 120E 150E
Annual Mean for GPP (gC/m2iday): BNU-ESM, 1962-2005

150W120W SOW 6OW 30W 0 30E 60E S0E 120E 150E
Annual Mean for GPP (gC/m2/day): CanESM2, 19822005

150W120W SOW 6OW 30W O WE B0E 9OE 120E 150
Annual Mean for GPP (gC/m2/day): CESM{-BGC, 1962-2005

150W120W SOW 6OW 30W O 30E BOE 90E 120 150E
Annual Mean for GPP (gC/m2/day): GFDL-ESM2G, 1982-2005

150W 120W SOW 60W 30W 0 J0E 60E SOE 120E 150E
Annual Mean for GPP (gC/m2/day): HadGEM2-ES, 1982-2005

150W120W SOW 60W 30W O 30E BOE 90E 120 150E
Aanual Wean for GPP (gC/ma/dsy): med, 1962:2005

150W120W 0W 60W 30W O 30E BOE 90E 120 150E
Annual Mean for GPP (gC/m2/day): IPSL-CMSA-LR, 10822005

150W 120W 9OW 60W 30W 0 30E 60E GOE 120E 150E
Annusl Mean for GPP (qC/m2day): MIROC-ESM, 1082.2005

150W120W 0W 60W 30W O 30E BOE 90E 120 150E
Annual Mean for GPP (gC/m2/day): MPLESM-LR, 1082-2005

150W120W 9OW 6OW S0W O 30E BOE 90E 120 150E
Annual Mean for GPP (gCim2/day): MAI-ESM, 19822005
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Seasonal Cycle of Regional GPP
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ILAMB Model Scoring by Va
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ILAMB Next Generation Layout
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ILAMB Next Generation Layout
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Future ILAMB Development and Application

» Current ILAMB Prototype was applied to:
» Model development of the Community Land Model (CLM)
» CMIP5 Historical and esmHistorical simulations
» ACME Land Model evaluation
» Within U.S. Department of Energy projects:
» NGEE Arctic, NGEE Tropics, and SPRUCE are adopting the framework
for evaluating process parameterizations & integrating field observations
» ACME is developing metrics for evaluation of new land model features
» BGC Feedbacks is developing the framework and benchmarking MIPs
» Future projects where we hope to apply ILAMB:
» CMIP6, including C*MIP, LS3MIP, and LUMIP
» TRENDY
» PLUME-MIP
» We will host a second ILAMB Workshop in the U.S. in the
Washington, DC area May 16-18, 2016
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