

ACG32-12

Assessing terrestrial biogeochemical feedbacks in a strategically geoengineered climate

Forrest M. Hoffman, Cheng-En Yang, Simone Tilmes, Douglas G. MacMartin, Lili Xia, Joshua S. Fu, Jadwiga H. Richter, Ben Kravitz, and Michael J. Mills

May 28, 2019

Climate Geoengineering

(Data from NOAA ESRL)

(Adopted from Lawrence et al., 2018)

Climate Geoengineering

Concepts of Climate Geoengineering

- artificially enhancing earth's albedo and thereby cooling climate by adding sunlight reflecting aerosol in the stratosphere ... additionally counteract the climate forcing of growing CO₂ emissions." *P. J. Crutzen (2006)*
- Strategies to deliberately offset the increasing radiative forcing due to anthropogenic emissions
 - Carbon dioxide removal (CDR)
 - Solar radiation management (SRM) → no CO₂ control

Geoengineering Impacts on Climate

- Evaluation of geoengineering in Earth system models (ESMs)
 - Suppressed global mean surface temperature warming and precipitation (Tilmes *et al.*, 2013; Kravitz *et al.*, 2013; Irvine *et al.*, 2016)
 - Reduced direct radiation but increased diffuse radiation (Robock *et al.*, 2009; Kravitz *et al.*, 2011; Xia *et al.*, 2016)
 - Less plant heat stress and higher photosynthesis rate and net primary production (Xia *et al.*, 2016; Kravitz *et al.*, 2013; Cao, 2018)

Little attention has been given to understanding responses of terrestrial (and marine) ecosystems to a geoengineered climate

Science Questions

We will investigate responses of terrestrial ecosystems to a geoengineered RCP 8.5 climate through SO_2 injections in the lower stratosphere to address these questions:

- Will terrestrial ecosystems remain a carbon sink?
- How will the land carbon sink change compared with standard RCP 8.5?
- How will those changes affect the global atmospheric CO₂ trajectory?

Modeling Projects for Climate Geoengineering

Project	<u>Geo</u> engineering <u>M</u> odel <u>I</u> ntercomparison <u>P</u> roject (GeoMIP) (Kravitz <i>et al.</i> , 2011)	Stratospheric Aerosol <u>G</u> eoengineering Large <u>Ens</u> emble Project (GLENS) (Tilmes <i>et al.</i> , 2018)				
Baseline scenarios	RCP4.5 4 × CO ₂ +1% CO ₂ / yr	RCP8.5				
Geoengineering period	2020 – 2069	2020 – 2099				
SO ₂ injection locations	Single point at the Equator	4 optimized points to avoid uneven cooling between the poles and equator				
Ensemble members	1 – 4	20				

An Overview of GLENS

How about the terrestrial biogeochemical feedbacks?

Analytical Method

Dataset: 3 of 20 ensemble members from GLENS

*	Scenarios	Baseline (BASE)	RCP8.5 (RCP85)	Geoengineering (GEOENG)				
-	Duration	2010 – 2019	2020 – 2097	2020 – 2097				
-	Time slices		2020 – 2039 (short-term) 2050 – 2069 (mid-term) 2078 – 2097 (long-term)					

Regions: global and 13 IGBP ecoregions

Global Ecoregions and Terrestrial Carbon Cycle

International Geosphere-Biosphere Programme (IGBP) ecoregions

Water Bodies
Evergreen Needleleaf Forest
Evergreen Broadleaf Forest
Deciduous Needleleaf Forest
Mixed Forest
Open Shrublands
Woody Savannas

- Global terrestrial carbon variables
- GPP: gross primary production
- NPP: net primary production
- NEP: net ecosystem production
- NBP: net biome production

- R_a: autotrophic respiration
- R_h: heterotrophic respiration
- Disturbance (e.g. harvest, forest clearance, and fire)

Changes in Temperature and Precipitation

GEOENG - BASE

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

GEOENG - RCP85

Wetter

Drier

(Averaging period: BASE=2010-2019, RCP85=2020-2097, GEOENG=2020-2097)

1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6

0.3

0.6 0.9

0

Changes in Temperature and Precipitation

GEOENG - BASE

Surface Temperature (K)

Precipitation (mm/day)

- Global mean temperature is maintained at 2020 levels in GEOENG
- Lower precipitation in **GEOENG** than RCP85
 - Cooler temperatures Ο
 - Aerosol-cloud Ο interactions
- Climate effects in GLENS are well described by other researchers

Changes in Radiation and Photosynthesis

Changes in Terrestrial Carbon Uptake

Changes in Water Cycle

- Lower temperatures result in lower ET while increasing precipitation can enhance ET
- Soil moisture is related to precipitation as well as temperature changes
- Runoff = precip ET

Carbon Sink Strength

Time period	Cumulated Terrestrial Biogeochemical Feedbacks (unit: Pg C)											
	RCP85	GEOENG	Δ	RCP85	GEOENG	Δ	RCP85	GEOENG	Δ	RCP85	GEOENG	Δ
All time	198	277	79	125	130	5	16	27	11	4	23	19
2020 – 2039	50	62	12	31	35	4	4	5	1	2	5	3
2050 – 2069	56	77	21	33	33	0	5	8	3	2	7	5
2078 – 2097	43	73	30	32	33	1	3	8	5	-1	6	7

Carbon Sink Strength

	Cumulated Terrestrial Biogeochemical Feedbacks (unit: Pg C)											
Time period	Global			Evergreen broadleaf forest			Open shrublands			Mixed forest		
	RCP85	GEOENG	Δ	RCP85	GEOENG	Δ	RCP85	GEOENG	Δ	RCP85	GEOENG	Δ
All time	198	277	79	125	130	5	16	27	11	4	23	19
2020 – 2039	50	62	12	31	35	4	4	5	1	2	5	3
2050 – 2069	56	77	21	33	33	0	5	8	3	2	7	5
2078 – 2097	43	73	30	32	33	1	3	8	5	-1	6	7

- More carbon stored in terrestrial ecosystems in GEOENG over time
- The largest carbon sink pool is Evergreen broadleaf forests

 The most sensitive ecoregions to climate geoengineering are mixed forests and croplands

(Yang et al., in prep.)

Accounting for Terrestrial Ecosystem Feedbacks

We can adjust the global CO₂ trajectory to account for terrestrial ecosystem feedbacks

 Increased vegetation productivity under geoengineering resulted in an additional 79 Pg C sink by the end of the 21st century in comparison with RCP 8.5

• Increase in atmospheric CO_2 should have been reduced by 7% at 2097 due to the terrestrial carbon feedback because of increased vegetation productivity ($\Delta[CO_2]_{atm} = 37$ ppm)

Next Steps

- Thus, sulfate aerosol injection could be similarly reduced to maintain the 2020 global temperature target
- We can estimate the global adjusted radiative forcing and temperature change due to the increased land sink
- Then we can estimate a lower sulfate injection rate when accounting for terrestrial feedbacks

Summary

Responses of terrestrial ecosystems to a geoengineered RCP 8.5 climate through SO_2 injections in the lower stratosphere

- Will the terrestrial ecosystems remain a carbon sink? Yes, globally terrestrial ecosystems will remain a carbon sink under the geoengineered climate.
- How will the land carbon sink change compared with standard RCP 8.5? At the end of 21st century, terrestrial ecosystems reduce ~79 Pg C under the RCP 8.5 scenario with aerosol geoengineering.
- How will those changes affect the global atmospheric CO₂ trajectory? At the end of 21st century, the terrestrial carbon feedback reduces the atmospheric CO₂ mole fraction by 7% under geoengineering.

Continued Geoengineering Research

Additional simulation experiments, many of which are proposed for GeoMIP in CMIP6, are needed:

- Emissions-driven (instead of concentration-forced) ESM simulations would integrate all carbon fluxes and prognostically determine the atmospheric CO₂ trajectory
- ESM simulations with coupled ocean biogeochemistry would account for marine feedbacks that are likely to be most strongly affected by increased ocean acidification

Acknowledgements

This research was supported by the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation (RUBISCO) Scientific Focus Area (SFA), which is sponsored by the Regional and Global Model Analysis (RGMA) Program in the Climate and Environmental Sciences Division (CESD) of the Biological and Environmental Research (BER) Program in the U.S. Department of Energy Office of Science. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

Optimized SO₂ Injection Locations

Oightharpoint SO₂ injection points

• Optimized, 30°N, 15°N, 15°S, 30°S

