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Introduction

Observations of the Earth system are increasing in spatial resolution and
temporal frequency, and will grow exponentially over the next 5-10 years

With Exascale computing, simulation
output is growing even faster,
outpacing our ability to evaluate and
benchmark model results

Explosive data growth and the
promise of discovery through
data-driven modeling necessitate
new methods for feature extraction,
change detection, data assimilation,
simulation, and analysis

Frontier at Oak Ridge National Laboratory is the #1 fastest
supercomputer on the TOP500 List and the first
supercomputer to break the exaflop barrier (May 30, 2022).



https://top500.org/

FOCUS NEXT-GENERATION

This article is the second in a two-part series.
The first part, “How to Build a Hypercomputer,” by
Thomas Sterling, appeared in the July 2001 issue.

Scientists have
found a cheaper
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CLUSTER OF PCs at the
0Oak Ridge National
Laboratory in Tennessee
has been dubbed the
Stone SouperComputer.
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Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The
Do-It-Yourself Supercomputer, Sci. Am., 265(2):72-79,

https://www.scientificamerican.com/article/the-do-it-yvourself-superc/
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Multivariate Geographic Clustering

e Ecoregions have traditionally been
created by experts

e Qur approach has been to objectively
create ecoregions using continuous
continental-scale data and clustering

e We developed a highly scalable k-means
cluster analysis code that uses distributed
memory parallelism

e Originally developed on a 486/Pentium
cluster, the code now runs on the largest
hybrid CPU/GPU architectures on Earth

Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The Do-It-Yourselfi
Supercomputer, Sci. Am., 265(2):72-79,
https://www.scientificamerican.com/article/the-do-it-yourself-superc/
OGS

MAKING MAPS WITH THE STONE SOUPERCOMPUTER

TO DRAW A MAP of the ecoregions in the continental U.S.,the Stone  thecellsinathi i ional d p d group them into four
| isticsof 7.8 gions. The f gion map divides the U.S. into recognizable

ercells. As a simple example, consider  zones (illustration B); a map dividing the country into 1,000 eco-
istic: regions provides far more detail (C). Another approach is to

levels of red, green and blue (D).
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New Analysis Reveals
Representativeness
of the AmeriFlux Network

PAGES 529,535

The AmeriFlux network of eddy flux covari-
ance towers was established to quantify varia-
tion in carbon dioxide and water vapor exchange
between terrestrial ecosystems and the atmos-

BY WiLLiam W, HARGROVE, FORREST M. HOFFMAN,
AND BeVERLY E. Law

phere,and to understand the underlying mech-
anisms responsible for observed fluxes and
carbon pools.The network is primarily funded
by the U.S.Department of Energy, NASA, the
National Oceanic and Atmospheric Adminis-
tration, and the National Science Foundation.
Similar regional networks elsewhere in the

synthesis activities across larger geographic
areas [Baldocchi et al.,2001; Law et al.,2002]
The existing AmeriFlux network will also
form a backbone of “Tier 4” intensive measure-
ment sites as one component of a fourtiered
carbon observation network within the North
American Carbon Program (NACP).The NACP
seeks to provide long-term, mechanistically
detailed,spatially resolved carbon fluxes across
North America [Wofsy and Harriss, 2002]. For
both of these roles, the AmeriFlux network
should be ecologically representative of the
environments contained within the geographic
boundaries of the program. A new ecoregion-
scale analysis of the existing AmeriFlux net-
work reveals that, while central continental

Id—for example, C , AsiaFlux,
OzFlux, and Fluxnet Canada—participate in

are well
flux towers are needed to represent environmental

Fig. 1.The representativeness of an existing spatial array of sample locations or study sites—for example, the AmeriFlux network of carbon dioxide
eddy flux covariance towers—can be mapped relative (o a set of quantitative ecoregions, suggesting locations for additional samples or sites.
Distance in data space to the closest ecoregion containing a site quantifies how well an existing network represents each ecoregion in the map.
Environments in darker ecoregions are poorly represented by this network

Network Representativeness

e The n-dimensional space formed by the
data layers offers a natural framework for
estimating representativeness of
individual sampling sites

e The Euclidean distance between individual
sites in data space is a metric of similarity
or dissimilarity

e Representativeness across multiple
sampling sites can be combined to
produce a map of network
representativeness

Hargrove, W. W., and F. M. Hoffman (2003), New Analysis Reveals
Representativeness of the AmeriFlux Network, Eos Trans. AGU,

84(48):529, 535, doi:10.1029/2003E0480001.
TGS
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Optimizing Sampling Networks

e Our group produced this network
representativeness map for the authors
from global climate, edaphic, and

elevation and topography data

Dark areas, including most of the Indian
subcontinent, were poorly represented
by the constellation of eddy covariance
flux towers participating in FLUXNET in
the year 2007

Sundareshwar, P. V., et al. (2007), Environmental Monitoring Network

for India, Science, 316(5822):204-205, doi:10.1126/science.1137417.
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nderstanding the consequences of glo-
I environmental change and its miti-
ation will require an integrated global

effort of comprehensive long-term data collec-
tion, synthesis, and action (/). The last decade

has seen a dramatic global increase in the num-
ber of networked monitoring sites. For exam-
ple, FLUXNET is a global collection of =300
micrometeorological terrestrial-flux research
sites (see re, right) that monitor fluxes of
CO,. water vapor, and energy (2-4). A similar,
albeit sparser, network of ocean observation
sites is quantifying the fluxes of greenhouse
gases (GHGs) from oceans and their role in the
global carbon cycle (5, 6). These networks are
aperated on an ad hoc basis by the scientific
community. Although FLUXNET and other
observation networks cover diverse vegetation
types within a 70°S to 30°N latitude band (3)
and different oceans (3, 6), there are not com-
prehensive and reliable data from African and
Asian regions. Lack of robust scientific data
from these regions of the world is a serious

fiment to efforts to understand and miti-

An integrated monitoring system is proposed
for India that will monitor terrestrial, coastal,
and oceanic environments.

Current monitoring sites in FLUXNET. Sites are shown in red, and global representativeness is estimated by
Global Multivariate Clustering Analysis (24-26). Darker areas are poorly represented by the existing FLUXNET
towers. Environmental similarity was calculated from a set of variables (precipitation, temperature, solar flux,
total soil carbon and nitrogen, bulk density, elevation, and compound topographic index) at a resolution of 4 km.

provide a scientific understanding (i) of the
coupling of atmospheric, oceanic, and terres-
trial environments in India; (ii) of the nature
and pace of environmental change in India;
and (iii) of subsequent impacts on provision of

gate impacts of climate and environmental
chang 7).

The Indian subcontinent and the surround-
ing seas, with more than 1.3 billion people and

unique natural resources, have a significant
impact on the regional and global environment
but lack a comprehensive environmental ob-
servation network. Within the government
of India, the Department of Science and Tech-
nology (DST) has proposed filling this gap
by establishing INDOFLUX, a coordinated
multidisciplinary environmental monitor-
ing network that integrates terrestrial,
coastal, and occanic environments (sce ()
figure, right).

In a workshop held in July 2006 (8), a
team of scientists from India and the United
States developed the overarching objectives

for the proposed INDOFLUX. These are to ﬂ

The authors were members of an indo-U.S. bilateral
workshop on INDOFLUX. Affiliations are provided in the
supporting online material.

*Author for correspondence. E-mail: pvs@sdsmt.edu
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ccosystem services. Also, in order to evaluate
what will enable India to sustain its natural
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resources, these goals include an assessment of
the vulnerability and consequent risks to its

social and natural systems.

Climate change will alter the regional bio-
sphere-climate feedbacks and land-ocean cou-
pling. Although global models reliably predict
the trend in the impact of climate change

on India’s forest resources, the magnitude
of such change is uncertain (9). Similarly,
whereas all oceans show the influence of
global warming (10), the Indian Ocean
has shown higher-than-average surface
warming, especially during the last

five decades (77, 12). This warm-

ing may have global impacts (13,

14), even though the impact on

the Indian summer monsoons is

not well understood (735, 76). These
uncertainties highlight the need for
regional models driven by regional data

As the hypoxia observed in the Gulf

n of Mexico is related to agricultural prac-
tices in the watershed (/7), Indian Ocean
studies also indicate couplings between
mainland activities and offshore and

A schematic of the INDOFLUX proposal.

Placement of stations reflects different

climactic, vegetation, and land-use areas.

Final locations will be determined as

part of the formal science plan.

www.sciencemag.org
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Fig. 1 Map of the CTFS-ForestGEO network illustrating its representation of bioclimatic, edaphic, and topographic conditions globally.
Site numbers correspond to ID# in Table 2. Shading indicates how well the network of sites represents the suite of environmental fac-
tors included in the analysis; light-colored areas are well-represented by the network, while dark colored areas are poorly represented.
Stippling covers nonforest areas. The analysis is described in Appendix S1.

Table 1 Attributes of a CTFS-ForestGEO census

Attribute

Utility

Very large plot size

Includes every fre di

Resolve community and population dynamics of highly diverse forests with many
rare species with sufficient sample sizes (Losos & Leigh, 2004; Condit ef al., 2006);
quantify spatial patterns at multiple scales (Condit ef al., 2000; Wiegand et al., 2007a,b;
Detto & Muller-Landau, 2013; Lutz et al., 2013); characterize gap dynamics
(Feeley et al., 2007b); calibrate and validate remote sensing and models, particularly
those wn]\ large spatial grain (Mascaro et al., 2011; Réjou-Méchain et al., 2014)

woody stem >1 cm DBH
All individuals identified
to species

Diameter measured on

all stems

Mapping of all stems and

fine-scale topography

Census typically repeated
every 5 years

C the abundance and diversity of understory as well as canopy trees; quantify
the demography of juveniles (Condit, 2000; Muller-Landau et al., 2006a,b).
Characterize patterns of diversity, species-area, and abundance distributions
(Hubbell, 1979, 2001; He & Legendre, 2002; Condit et al., 2005; John et al., 2007;
Shen et al., 2009; He & Hubbell, 2011; Wang et al., 2011; Cheng et al., 2012); test theories
of competition and coexistence (Brown et al., 2013); describe poorly known plant species
(Gereau & Kenfack, 2000; Davies, 2001; Davies et al., 2001; Sonké et al., 2002;
Kenfack et al., 2004, 2006)
Characterize size-abundance distributions (Muller-Landau et al., 2006b; Lai et al., 2013;
Lutzet al., 2013); combine with allometries to estimate whole-ecosystem properties
such as biomass (Chave et al., 2008; Valencia et al., 2009; Lin et al., 2012; Ngoet al., 2013;
Muller-Landau et al., 2014)
Characterize the spatial pattern of populations (Condit, 2000); conduct spatially explicit
analyses of neighborhood influences (Condit et al., 1992; Hubbell et al., 2001;
Uriarte et al., 2004, 2005; Riiger et al., 2011, 2012; Lutz et al., 2014); characterize microhabitat
specificity and controls on demography, biomass, etc. (Harms ef al., 2001; Valencia et al., 2004;
Chuyong et al., 2011; align on the ground and remote sensing measurements (Asner et al., 2011;
Mascaro et al., 2011).
Characterize demographic rates and changes therein (Russo ef al., 2005; Muller-
Landau et al., 2006a,b; Feeley et nl 2007a; Lai et al., 2013; Stephenson et al., 2014);
1 ize changes in ition (Losos & Leigh, 2004; Chave et al., 2008;
Feeley et al., 2011; Swenson et al., 2012; Chlsho]m et al., 2014); characterize changes in
biomass or productivity (Chave et al., 2008; Banin et al., 2014; Muller-Landau et al., 2014)

©2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12712

Optimizing Sampling Networks

e The CTFS-ForestGEO global forest monitoring
network is aimed at characterizing forest
responses to global change

e The figure at left shows the global

representativeness of the CTFS-ForestGEO
sites in 2014

e Non-forested areas are masked with
hatching, and as expected, they are
consistently darker than the forested
regions, which are represented to varying
degrees by the monitoring sites

Anderson-Teixeira, K. J., et al. (2015), CTFS-ForestGEO: A Worldwide Network
Monitoring Forests in an Era of Global Change, Glob. Change Biol.,
21(2):528-549, doi:10.1111/gcb.12712.
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Representativeness for Alaska

Data Layers

Table: 37 characteristics averaged for the present (2000-2009) and the future (2090-2099).

Description Number/Name Units Source
Monthly mean air temperature 12 °C GCM
Monthly mean precipitation 12 mm GCM
mean day of year GCM

Dy i freges standard deviation days
mean day of year GCM

Lay ol o standard deviation days
Leneth of . mean days GCM

CngEh of growing season standard deviation days
Maximum active layer thickness 1 m GIPL

Warming effect of snow

Mean annual ground temperature at bottom
of active layer

Mean annual ground surface temperature
Thermal offset

Limnicity

Elevation

1

— = e

°C
€
“E
°C
%

m

GIPL
GIPL

GIPL

GIPL

NHD
SRTM

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove (2013),
Representativeness-Based Sampling Network Design for the State of Alaska,
Landscape Ecol., 28(8):1567-1586, doi:10.1007/s10980-013-9902-0.
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Abstract Resource and logistical constraints limit
the frequency and extent of environmental observa-
tions, particularly in the Arctic, necessitating the
development of a systematic sampling strategy to
maximize coverage and objectively represent envi-
ronmental variability at desired scales. A quantitative
methodology for stratifying sampling domains,
informing site selection, and determining the repre-
sentativeness of measurement sites and networks is
described here. Multivariate spatiotemporal clustering
was applied to down-scaled general circulation model
results and data for the State of Alaska at 4 km?
resolution to define multiple sets of ecoregions across
two decadal time periods. Maps of ecoregions for the
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present (2000-2009) and future (2090-2099) were
produced, showing how combinations of 37 charac-
teristics are distributed and how they may shift in the
future. Representative sampling locations are identi-
fied on present and future ecoregion maps. A repre-
sentativeness  metric was  developed, and
representativeness maps for eight candidate sampling
locations were produced. This metric was used to
characterize the environmental similarity of each site.
This analysis provides model-inspired insights into
optimal sampling strategies, offers a framework for
up-scaling measurements, and provides a down-scal-
ing approach for integration of models and measure-
ments. These techniques can be applied at different
spatial and temporal scales to meet the needs of
individual measurement campaigns.

Keywords Ecoregions - Representativeness -
Network design - Cluster analysis - Alaska -
Permafrost

Introduction

The Arctic contains vast amounts of frozen water in
the form of sea ice, snow, glaciers, and permafrost.
Extended areas of permafrost in the Arctic contain soil
organic carbon that is equivalent to twice the size of
the atmospheric carbon pool, and this large stabilized

) Springer
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10 Alaska Ecoregions, Present and Future

(Hoffman et al., 2013)

1000 km

1000 km

2000-2009 2090-2099

e Since the random colors are the same in both maps, a change in color represents an
environmental change between the present and the future.

e At this level of division, the conditions in the large boreal forest become compressed onto the
Brooks Range and the conditions on the Seward Peninsula “migrate” to the North Slope.




20 Alaska Ecoregions, Present and Future

(Hoffman et al., 2013)

1000 km
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1000 km

2000-2009 2090-2099

e Since the random colors are the same in both maps, a change in color represents an
environmental change between the present and the future.

e At this level of division, the two primary regions of the Seward Peninsula and that of the
northern boreal forest replace the two regions on the North Slope almost entirely.




Sampling Site Representativeness

e This representativeness analysis uses the standardized n-dimensional data
space formed from all input data layers

e In this data space, the Euclidean distance between a sampling location (like
Barrow) and every other point is calculated

e These data space distances are then used to generate grayscale maps showing
the similarity, or lack thereof, of every location to the sampling location

e Inthe subsequent maps, white areas are well represented by the sampling
location or network, while dark and black areas as poorly represented by the
sampling location or network

e This analysis assumes that the climate surrogates maintain their predictive
power and that no significant biological adaptation occurs in the future



(Hoffman et al., 2013)

Network Representativeness: Barrow vs. Barrow + Council

Light-colored regions are well represented and dark-colored regions are poorly represented by
the sampling location listed in red.




State Space Dissimilarities: 8 Sites, Present (2000-2009)

Table: Site state space dissimilarities for the present (2000-2009).

Toolik Prudhoe

Sites Council Atgasuk Ivotuk Lake Kougarok Bay  Fairbanks
Barrow 9.13 4.53 5.00 5.87 7.98 3.57 12.16
Council 8.69 6.37 7.00 2.28 8.15 5.05
Atqasuk 5.18 5.23 7.79 1.74 10.66
lvotuk 1.81 5.83 4.48 7.90
Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57
Prudhoe Bay 10.38




State Space Dissimilarities: 8 Sites, Present and Future

Table: Site state space dissimilarities between the present (2000-2009) and the future (2090-2099).

Future (2090-2099)
Toolik Prudhoe
Sites Barrow Council Atqasuk Ivotuk Lake Kougarok Bay  Fairbanks

Barrow 3.31 9.67 4.63 6.05 5.75 9.02 3.69 11.67
Council 8.38 1.65 8.10 591 6.87 3.10 7.45 5.38
Atgasuk 6.01 9.33 2.42 546 5.26 8.97 2.63 10.13
lvotuk 7.06 7.17 5.63 153 205 128 4.87 7.40
Toolik Lake 7.19 7.67 6.07 248 1.25 7.70 5.23 8.16
Kougarok 7.29 3.05 6.92 557 6.31 251 6.54 5.0
Prudhoe Bay 5.29 8.80 3.07 475 4.69 8.48 1.94 9.81
Fairbanks 12.02 549 10.36 7.83 8.74 6.24 10.10 1.96

Present (2000-2009)




Sampling Network Design
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Gridded data from satellite and
airborne remote sensing, models, and
synthesis products can be combined to
design optimal sampling networks and
understand representativeness as it
evolves through time
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(Maddalena et al., in prep.)




50 Phenoregions for year
2012 (Random Colors)

250m MODIS NDVI
Every 8 days (46 images/year)
Clustered from year 2000 to present

Cluster 11 || Cluster 49 || Cluster 15 || Cluster 48 || Cluster 31 || Cluster 16 || Cluster 47 || Cluster 20 || Cluster 35 || Cluster 33
Sta=e
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Cluster 45 || Cluster 6 || Cluster 18 || Cluster 36 || Cluster 28 Cluster 32 || Cluster 44 || Cluster 34 || Cluster 17
Cluster 2 || Cluster 10 || Cluster 40 || Cluster 5 || Cluster 23 || Cluster 13 || Clus Cluster19 || Cluster 41
‘/\ o~ o~ \/\

Earthinsights

day of year

50 Phenoregion Prototypes
(Random Colors)

(Hargrove et al., in prep.)




50 Phenoregions Persistence
and
50 Phenoregions Max Mode
(Similarity Colors)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
L I I I I 1 1 I I I I

2 r z Principal Components
g |— " Analysis

PC1 ~ Evergreen

_ PC2 ~ Deciduous

" PC3 ~ Dry Deciduous

T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month of Year

(Hargrove et al., in prep.)




GSMNP: Spatial distribution of the 30 vege’ro e’
Clusters across the national park a, AT

Extracted canopy height and structure from
airborne LiDAR

10 km
I

Earthinsights (Kumar et al., in prep.)



GSMNP: 30 representative vertical structures
cluster centroids) identified

tall forests with low
understory vegetation

|

Height (m)

forests with slightly lower
mean height with dense
understory vegetation

low height grasslands and
heath balds that are small
in area but distinct
landscape type

Earthinsights

Height (m) Height (m) Height (m)

Height (m)

[1]3.55% [2] 3.96% [3]2.42% [4]5.01% [5]5.81%
60 _ 60 _ 60 _ 60 __ 60
50 E 50 E 50 E 50 E 50
40 Z 4 = 4 = 40 Z 4
30 530 30 530 30
20 220 22 220 £ 20
10 /lu 10 10 10
o 0 0 0 0
0 10 20 30 0 10 20 30 40 0 10 20 30 40 0 10 20 30 10 20 30 40
% of Prof % of Profile % of Profile % of Profile % of Profile
[615.29% [712.35% (8] 2.82% [9] 2.00% [10] 4.83%
__ 60 __ 60 __ 60 __ 60
E 50 Es0 E 50 E 50
£ 40 = a0 = 40 Z 4
=30 S 30 S 30 =30
220 22 £ 20 £ 20
10 10 10 10
0 3 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 10 20 30 10 20 30 40
% of Profile % of Profile % of Profile % of Profile % of Profile
[11] 2.60% [12] 4.00% [13] 1.22% (14] 0.47% [15] 2.92%
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50 E 50 E 50 E S0
40 = 4 1 240 Z 4
30 S30 530 &30
20 22 220 £ 2
10 10 0 10
0 0 0 [
0 10 20 30 40 [ 0 0 10 20 30 10 20 30 4o
% of Profile % of Profile % of Profile
[16] 5.42% 18] 1.64% [19]3.83% [20]1.73%
60 __ 60 __ 60 _
50 E S0 E 50 E
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30 30 |_S30 S
20 22 £ 20 z
10 10 10
0 0 0 0
30 40 0 10 20 30 40 10 20 30 0 10 20 30 40
% of Profile % of Profile % of Profile % of Profile
[21] 1.82% [22] 1.90% [23] 2.49% [24] 3.79% [25] 3.25%
60 _ 60 _ 60 _ 60 _ 60
50 E 50 E 50 E 50 E 50
40 Z 4 = 40 = 4 Z 4
30 530 530 530 P &30
20 220 22 220 / £ 2
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0 [ [ o= 0
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% of Profile % of Profile % of Profile % of Profile % of Profile
[26] 4.70% [27] 5.82% [28] 4.31% [29] 3.53% [30] 3.40%
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* (Kumar et al., in prep.)




Global Fire Regimes

Regions that exhibit similar fire seasonality globally
From MODIS “Hotspots” at 1 km resolution from 2002-2018

Earthinsights (Norman et al., submitted)




Vegetation Distribution at Barrow Environmental Observatory

Phenology Representativeness

v

July 26, 2010 Representativeness

/!

Representativeness map for vegetation
sampling points in sites A, B, C, and D with
phenology (left) and without (right) from
WorldView2 multispectral imagery for the
year 2010 and LiDAR data

Example plant functional type (PFT)
distributions scaled up from vegetation
sampling locations

Site A Site B Site C

In situ data from field measurement activities inform the
development of wide-scale maps of vegetation distribution
through inference using remote sensing data as surrogate
variables, and relationships with environmental controls

can be extracted

Langford, Z. L., et al. (2016), Mapping Arctic Plant Functional Type
Distributions in the Barrow Environmental Observatory Using

Site D

Site A Site B

Site C

WorldView-2 and LiDAR Datasets, Remote Sens., 8(9):733,

doi:10.3390/rs8090733.

Site D

0sses

Wet Tundra Graminoid
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Arctic Vegetation Mapping from Multi-Sensor Fusion

Used Hyperion Multispectral and IfSAR-derived Digital Elevation Model, applied cluster analysis, and
trained a convolutional neural network (CNN) with Alaska Existing Vegetation Ecoregions (AKEVT)

—— Kougarok Watershed

Vegetation Type

Bl Rock

B Water

I Alder-Willow Shrub

I Mixed Shrub-Sedge Tussock Tundra
[ | Dryas/Lichen Dwarf Shrub Tundra
[ Sedge-Willow-Dryas Tundra

Langford, Z. L., et al. (2019), Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural
Networks, Remote Sens., 11(1):69, doi:10.3390/rs11010069.
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Satellite Data Analytics Enables Within-Season Crop Identification

Earliest date for crop type classification
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USDA Crop Data Layer (CDL) shows similar patterns at —— Wl v " ',3'6 —
continental scale. b) Good spatial agreement is found at P 0 e® W et o (o0 pecdOgec®

three selected regions, but cluster-then-label crop maps Konduri, V. S., J. Kumar, W. W. Hargrove, F. M. Hoffman, and A. R.
lack sharpness at field boundaries due to coarser Ganguly (2020), Mapping Crops Within the Growing Season
resolution of MODIS data. Across the United States, Remote Sens. Environ., 251, 112048,

doi:10.1016/j.rse.2020.112048.
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Watershed-Scale Plant Communities Determined from DNN and AVIRIS NG

3T PR e

Kougarok o t, g “
Council

Teller

Legend
@ Alder-Willow Shrub © Sedge-Willow-Dryas Tundra
© Birch-Ericaceous-Lichen Shrub Tundra @ Tussock-Lichen Tundra

@ Dryas-Lichen Dwarf Shrub Tundra © Wet Meadow Tundra

© Ericaceous Dwarf Shrub Tundra © Wet Sedge Bog-Meadow

@ Mesic Graminoid-Herb Meadow O Willow Shrub

@ Mixed Shrub-Sedge Tussock Tundra X J thlow-Bu';h Shrub

At the Watershed scale, vegetation community distribution follows topograph/c and water controls.
At a fine scale, nutrients limit the distribution of vegetation types.

Earthinsights (Konduri et al., in pre

)



Hybrid ML/Process-based Modeling for Terrestrial Modeling

' Competition ! !

Dynamic
7 Biogeography
Dispersal

Age Structure

In the hierarchy of land
model processes, we start
with the photosynthesis
parameterization because

Atmosphere

Insects and Disease

Extremes (drought,
_cold ete)

Heterotrophs

e Multiple hypotheses N |

e Many leaf-level oY/ -Mmy
measurements w e

e Most computationally R Notdnt Bynamics
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Hybrid ML/Process-based Modeling for Terrestrial Modeling

Individual processes can be T Doy B P

[_Agng ||~ 4
represented by a i I \
Uitz ¢ > - //l:iiz-;gt Physiology \\\

multi-hypothesis approach, o |
Photosynthesis| o [[Allometry |

|| [[_Assimilation [_Cstorage | Disturbance
O p p O rtu n Ity O r a Transport Vertical Transp., ranspiration Iml ire
[ &v0G | [stoichiometry| [ Tumover ]

data-derived hypothesis that TN

<> Soil Physics Assembl,
i How Hydrology = . ¢
and ML provides an ; Gl [ (e e ey
Ve
7
<>

Interception
& Evaporation

Optical
Properties

{0

Drought

g
\ Xylem [ Respiration | [ Allometry |
’ ~| Transport

can be further explored or e e | I N
used to calibrate other L v:\\

hypotheses, when sufficient | /e o \ Toweriaren] (o] | > []

[ Cstorage | [ Growth |

3

+ ¢

Ball-Berry roey i -
| mmobilization Water Uptake o0t Agriculture
- | Respiration | [ Allometry |
Plant Hydraulics

| Microbial Ecol. IN n \ Fertilizer
trient Uptak \
A New Hypothesis st e | C Storage | Growth |
Harvest

H Somatalond. \ _Mineralisation S =\ ¢T ]
data are available. \

| Redox

Machine Learning Xylem Ti :
issue Nutrient|
\ Subtiodd ||/ [omerer ]
\ (e.g., fixed / Vertical ¢ ¢¢
conductance) Transport - = = =4
&Leaching | Seed Production| [ Recruitment| | Mortality | \ v
N A e
As - Y

(FIS her and Kove n, 2020) (a) Process Schematic of a Possible Full-Complexity Configuration of a Land Surface Model




Spanning Spatial & Temporal Scales for Ecosystem Modeling
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Grand Challenge #1

Energy Demand Electric Grid Wind, Solar, and Biofuels Hydro Power
+ Higher summer temperatures drive * Winds, ice storms, and wildfires damage * Changes in wind patterns and solar « Drought and reduced runoff reduce

. o .
prem el e R Project environmental risk and develo
(primarily electricity) * Extreme heat reduces power line/trans- + Extreme winds damage wind and solar + Earlier snowmelt shifts peak production

+ Higher winter temperatures drive reduced former capacity infrastructure earlier in the year

demand for heating energy (including * Flooding can damage substations/trans- * Increasing temperatures reduce generat- + Flooding increases risk of damage

natural gas, oil, and electricity) formers/underground lines . iggtr(::r?\:cvi\gaudmught e and disruption A re Si I ie n cy i n a c h a n gi n g e nVi ro n m e nt

production

* Increasing frequency of weather
extremes and changing environment
pose risks to energy infrastructure and
the built environment

meere. [ Sparse observations and inadequate

el model fidelity limit the ability to

+ Inland and coastal flooding can disrupt

operation and damages equipment

‘ \ - . . L . L . .
OlGascos il ey S identify vulnerability, mitigate risks,
flooding disrupt/damage offshore and

onshore energy operations and facilties Pipelines
* Reduced water availability constrains

drilling, fracking, and mining operations
+ Thawing permafrost and subsidence

reduce access and impact production

* Flooding damages pumping stations,
undermine/scour river crossings

* Loss of electricity impacts pumping
operations

U.S. DEPARTMENT OF Office of
6 EN ERGY Science

Refineries

* Extreme weather/flooding damage
refineries

* Reduced water availability can constrain
fuel refining and processing

* Loss of electricity impacts refining
operations

Fuel Transport
* Inland and coastal flooding inundate low-lying
roads and rails, and can damage bridges,
river and coastal ports, and storage facilities
+ Reduced river runoff can impede barge traffic
xtreme weather, flooding, and blackouts can
disrupt distribution outlets and gas stations

and respond to disasters

Washington DC Town Hall

October 22-23



Grand Challenge #1

* New tools are needed to accelerate
projection of weather extremes and
impacts on energy infrastructure

* Building resiliency to address evolving
risks will benefit from integration of
smart sensing systems,
built-for-purpose models, ensemble
forecasts to quantify uncertainty, and
dynamic decision support systems for
critical infrastructure

EPR, U.S. DEPARTMENT OF Office of

ENERGY Science October 22-23




Grand Challenge #2

Characterize and modify subsurface conditions for
responsible energy production, CO, storage, and
ZL contaminant remediation

* National energy security and transition to renewable
energy resources relies on utilization of subsurface
reservoirs for energy production, carbon storage, and
spent nuclear fuel storage

e Subsurface data are uncertain, disparate, diverse, sparse,
and affected by scaling issues

* Subsurface process models are incomplete, uncertain,
and frequently unreliable for prediction

@ Femm

I akage pathway

saline aquifer:
porous rocks filled
with salty water (brine): wetting/adhesion

B, U.S. DEPARTMENT OF Offlce Of WaShlngton DC TOWh Ha"

@ ENERGY Science October 22-23



,__ Producing Wolls |

Grand Challenge #2

ey

* We need to substantially increase hydrocarbon
extraction efficiency, discover and exploit
hidden geothermal resources, reduce induced
seismicity and other impacts, improve geologic .. 8
CO, storage, and predict long-term fate and &
transport of contaminants

* Mitigating risks requires improved subsurface : v A
characterization and assimilation of real-time SRR L
data streams into predictive models of N
geological and ecological processes

U.S. DEPARTMENT OF Office of Washington Dc Town HaII
ﬁ ENERGY science October 22-23



Grand Challenge #3 Mﬂf \ =/ e I Sy

Develop a predictive understanding of the Earth

system under a changing environment

* To advance the nation’s energy and infrastructure Energy & Water Cycles
security, a foundational scientific understanding of
complex and dynamic hydrological, biological, and vodn i W ANRIN
geochemical processes and their interactions is o l
required (across atmosphere, ocean, land, ice) 065550 | s B | |

Bl ||| Rl

* Knowledge must be incorporated into Earth
system models to project future climate conditions
for various scenarios of population,

socioeconomics, and energy production and use o
Carbon & Biogeochemical Cycles

U.s. DEPARTUENT OF | Office of Washington DC Town Hall
ﬁ ENERGY science October 22-23

River Ou



Grand Challenge #3

_ * Accurate predictions are needed to
Earth System Modeling . . .
“geospatially-explicit, process-based, & coupled” qua ntlfy Chan gES |n atmOSpherIC and
ocean circulation and weather extremes,
, to close the carbon cycle, and to
i e—— understand responses and feedbacks of

i e & human, terrestrial, and marine ecosystems

THE DATA MODULES COMPUTATION ENGINE

THE MODELS AND CALCULATIONS e OFVARIRBEES

o

Hydroelectric

= #3 toenvironmental change

* Advances in genomics and bioscience data
need to be leveraged to provide detailed
understanding of plant—microbial
interactions and their adaptations and
feedbacks to the changing environment

Agriculture
Productivity

Soil Moisture

U.S. DEPARTMENT OF Office of Washington Dc Town HaII
ﬁ ENERGY science October 22-23



Grand Challenge #4

Diverse, Multi-scale Environmental Data

Ensure global water security under a V| (B
g Y Lo |

changing environment e e

ensin
Molecular » Global

Modeling

Spatial Scale

* Water resources are critical for energy |
production, human health, food
security, and economic prosperity

* Water availability and water quality are
impacted by environmental change, /
weather extremes, and disturbances Modeling
such as wildfire and land use change

"

U.s. DEPARTUENT OF | Office of Washington DC Town Hall
@ ENERGY science October 22-23



Grand Challenge #4

* Methods are needed to integrate
disparate and diverse multi-scale data
with models of watersheds, rivers, and
water utility infrastructure

* Predictions of water quality and
quantity require data-driven models
and smart sensing systems

* Water resource management must
account for changes in weather
extremes, population, and economic
growth

U.s. DEPARTUENT OF | Office of Washington DC Town Hall
ﬁ ENERGY science October 22-23



Accelerating Development

The near-term (5—10 years) priorities are to: :
* Develop hybrid process-based/Al modeling frameworks for Exascale systems

) DeveIOp Strategles for mapplng Hybrid Approaches to Earth Science Simulation (Reichstein et al., 2019)
hybrid components on GPU/CPU - b e Ao g
based on computational density . ETEE L FEE S
and communications patterns  |@EE - oo

* Develop physics / chemistry / — & |
biology-constrained ML | G ¥ | G~

*Develop explainable Aland ML g — | & B
methods for hypothesis e ﬂ e I e

Washington DC Town Hall

generation and testing
October 22-23

B, U.S. DEPARTMENT OF Office Of

@ ENERGY Science




Expected Outcomes

* Model testbeds and surrogate models are expected to yield insights into
process understanding across all Grand Challenges

* Data-driven and physics-constrained hybrid models are expected to stimulate
new discovery and bridge space and time scales A

* Integrated models of Earth system processes and
energy/built infrastructure will enhance national
energy and water security through simulation

* Al methods will enable effective use of large data .
streams for energy production, predictive process
understanding, and environmental resiliency

Office of Washington DC Town Hall

ﬁ ENERGY Science October 22-23



AI4AESP

ARTIFICIAL INTELLIGENCE FOR EARTH
SYSTEM PREDICTABILITY (AI4ESP):
CHALLENGES AND OPPORTUNITIES

DOE Environmental System Science (ESS) Pl Meeting

CHARULEKA VARADHARAJAN NICKI L. HICKMON

FORREST M. HOFFMAN HARUKO WAINWRIGHT SCOTT M. COLLIS
Oak Ridge National Laboratory Lawrence Berkeley National Argonne National Laboratory
Laboratory

S”71°R, U.S. DEPARTMENT OF
2/ ENERGY
Ruas?



https://ai4esp.org/ https://ai4esp.slack.com/

Artificial Intelligence for Earth System
= AI4ES P Predictability

A multi-lab initiative working with the Earth and Environmental Systems Science Division (EESSD) of the
Office of Biological and Environmental Research (BER) to develop a new paradigm for Earth system
predictability focused on enabling artificial intelligence across field, lab, modeling, and analysis activities.

White papers were solicited for development Earth System Predictability Sessions Workshop Report o ® —-
and application of Al methods in areas e Atmospheric Modeling e Chapters for each
relevant to EESSD research with an emphasis ® Land Modeling . session have been rouo ot
on quantifying and improving Earth system e Human Systems & Dynamics written and on o ety
predictability, particularly related to the : \';'Vﬁgfls%ge% ccience reviewed — i o
integrative water cycle and extreme events. e Summary chapters — gkl v hige Romn ooph Fomrof
e Ecohydrology : . todySonger SOOI .
: I Aerosols & Clouds are being written D)t o i
° Steven Lee (ASCR) Randall Loviolette (ASCR)
l_’-low can DOE directly It_everage artlflcm{ e Climate Variability & Extremes now
mtelllg_ence (Al) to engineer a substc_mtlal e Coastal Dynamics, Oceans & Ice e Final review and o : o
(parad:gm-changmg) lmp_rovement in Cross-Cut Sessions approval expected T Wi e [
Earth System Predictability? e Data Acquisition soon after July 1,  mewZ by e
) ) e Neural Networks 2022 ot of ot of
156 white papers were received and read to e Surrogate models and emulators AMS Special i Voo Tino oo
plan the organization of the AI4ESP e Knowledge-Informed Machine Learning Collection
Workshop on Oct 25-Dec 3, 2021 e Hybrid Modeling e Proposal recently Hom e
PR e Explainable/Interpretable/Trustworthy Al submitted for all M
{zENERGY e Knowledge Discovery & Statistical Learning AMS | | SZAI4ESP
e Al Architectures and Co-design Sjournals



@ AI4ESP White Papers: Earth System Predictability Topics

e Watershed science

Hydro-Biogeochemistry, Soil biogeochemistry
Water quality

Lab-to-field, field-to-regional scale analysis
Experimental data, sensor networks (rapid
responses), and experimental/network designs

o O O O

for N \ o Hydrology o
Water resources ) éss.science.energy.gov

Precipitation-induced hazards (floods etc)

Weather/hydrological monitoring

Groundwater to surface water models

Mountain hydrology

Regional to continental scale

nasa.gov

o O O O O

climate.gov




@ AI4ESP White Papers: Earth System Predictability Topics

Atmospheric Modeling

Convection and turbulence

O

o O O O

Surfa

Coalescence Resuspension
& scavenging (droplet)

Ice Snow
nucleation

Secondary AN Aqueous Collection &
activation 2 chemistry Scavenging

ce Fluxes parice 4

nucleation
oo e

Radiation oo 2 IR SN

Model Tuning o

Gene

to other ESMs components

scavenging . o Diffusion/impaction
9 scavenging
transport 2 | M
Coagulation Resuspension

ral concepts that can generalized : 55 o iahdics) B

Condensation 1 Dry deposition
Activation 2

Gas & particle Impurities in
emissions 3 4 snow & ice
B H,50, vapor production and loss (NewH2504) B ice nucleation and ice-to-snow conversion (NewlceNuc)
B3 Convective transport and wet removal (NewConvTran) [ Resuspension of aerosol from evaporated raindrops (NewResusp)|
SOA precursor gas emission (NewSOA) Light-absorbing particles in snow and ice (NewInSnow)

Representation of marine organic aerosol (NewMOA)

e3sm.org

e Aerosols and Clouds
o Cloud Classification
o Aerosol cloud
interactions

e3sm.org

T
7

IENRRN]
it



https://doi.org/10.1029/2018GL077787

@ AI4ESP White Papers: Earth System Predictability Topics

e Land Modeling

(@)

o O O O

e Ecohydrology

(@)

o O O O

Agriculture / Crops
Leaf Phenology
Streamflow / Water Availability |
Wildfire

Satellite Data Assimilation

Getty Images

Adkins Arboretum wallpaperbetter.com

Stomatal Conductance / Photosynthesis
Plant Hydraulics and Growth
Evapotranspiration

Soil Moisture

Soil
Hydrology

drought.gov ) )
gnt-g Nature McDowell et al. (2019)




@ AI4ESP White Papers: Earth System Predictability Topics

e Climate variability and Extremes
o  TCs, ARs, Compound/Cascading events
o  Predictability
o  Circulation/climate variability (ENSO, NAO etc)
o  Telecommunication

(o) EP El Nifo
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e to Lo o Ocean/land/ice interface

o Sea-level rise, storm surge

o Coastal ecosystem/carbon cycling
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@ AI4ESP White Papers: Earth System Predictability Topics

e¢ Human Systems and Dynamics

o O O O O

Human activities/population
Energy-water-land nexus
Agriculture

Urban environment

Land use/cover changes

- Llhj LCC " 1) Atmospheric:
mospheric composition increzse  p— GO,

2) Land surface albedo - CH,

3) Sensible heat flux N0

4) Latent heat and water I NO,
vapor fluxes o o Lo

2) 3 4

DD N0 e
ice cultivation

asture Reforest-

I
Natural Environment |

Anthropogenic Land Use and Land Cover Change

lobalchange.gov
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AI4ESP: Cross-cutting Topics

Data Acquisition to Distribution
Neural Networks

Surrogate Models and Emulators
Knowledge-Informed Machine
Learning

Hybrid Modeling

Explainable and Trustworthy Al
Knowledge Discovery & Statistical
Learning

Al Architectures and Co-design

Discovery

@

------

Acquistion

[ ]
ara

Source of knowledge

World Knowledge

N
Expert Knowledge
_4

Probabilistic
relations

Human

feedback |

4 i i ! Represéntation o knowledgo\

p

A

e

Hypothesis set Learning algorithm

Integration in AI/ML pipeline

Final hypothesis

Figure adapted from Von Reuden et al. (2021)




Highlights Across All Sessions

Science

e Al/ML can accelerate next-generation integrated models to support decision-making that incorporate
complex natural and human processes at sufficient resolutions

Broad consensus on need for deep integration of process-based and ML models (hybrid models)
Challenges: scaling, sub-grid representation, model calibration/UQ, extreme events, human systems
Data gaps are vast — more observations informed by model needs, Al-ready products

Results must be robust, explainable, & trustworthy

Data, Software, Infrastructure

e Need benchmark data and model intercomparison approaches
e Computational infrastructure for integration of process & ML models, data assimilation and synthesis
e Use ML to accelerate data-model and model-observation pipelines

Culture

e Workforce development across domain and computational scientists
e Interdisciplinary research centers focused on AI4ESP
(W ENERGY

o

AI4ESP

{



Al-Constrained Ecohydrology for LANL, Porn Sate sl
Improving Earth System Predictions Contact: Forrest M. Hoffmar

Project to prototype machine learning-based parameterizations
for stomatal conductance and photosynthesis
o Photosynthesis is a computationally expensive part of land
models and leaf-level flux and phenology data are available
o Use combinations of leaf-level and plant hydrodynamics data
to build ML models of C3, C4, and CAM vegetation
o Investigate ML approaches for scaling to canopies and
watersheds
o Prototype hybrid ML-/process-based components within the
E3SM Land Model (ELM)

o Future efforts:

» Conduct regional and global simulations to benchmark different combinations
of process-based and ML modules
» Explore approaches for building hybrid modeling interfaces within ELM

@ ENERGY ZUAI4ESP




The Future is Bright for AI/ML in Earth System Science

A Convergence of New Technology, Explosive Data Growth, and Free Tools
o High performance computing (exascale in big centers and commercial cloud)
o Large data storage resources (commercial and on-premise cloud)
o High speed networks (e.g., ESnet) and data movement technologies (Globus)
o Satellites (shoebox CubeSats) and airborne (drones) platforms
o Cheap (free!) and easy-to-use ML tools (PyTorch, Keras, Scikit-Learn)

Future Applications Could Revolutionize Our Understanding and Ability to Predict
o Poorly understood processes and mechanisms can be mimicked with adequate
amounts of data and advanced ML techniques
o Explainable Al and systematic approaches to modeling could lead to new scientific
discoveries and improved understanding of the Earth system
o Predictions of complex, nonlinear, large-scale phenomena and natural hazards

could be predicted with increasing accuracy -
® SYAI4ESP
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