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Problem: Model Uncertainty

Model uncertainty is one of the biggest challenges we face in Earth system science, yet
comparatively little effort is devoted to fixing it (Carslaw et al., 2018)

◮ Model complexity is rapidly
increasing as detailed process
representations are added

◮ Evidence shows overall model
uncertainty is reduced only slowly
and is sometimes increased
(Knutti and Sedlác̆ek, 2013)

◮ A balance must be struck
between model “elaboration” and
efforts to reduce model
uncertainty

Patterns of precipitation change across two generations of
models. Adapted from Knutti and Sedlác̆ek (2013).



Why is Reducing Uncertainty a Challenge?

◮ Ecosystems have complex responses to a wide range of forcing factors in heterogeneous
spatial environments, requiring a highly multivariate approach

◮ The focus is on adding complexity (e.g., more detailed representations of plant traits,
photosynthesis, nutrient limitation, respiration), assuming more processes is better

◮ However, model uncertainty may increase, even as predictions of states and fluxes improves

◮ Rigorous confrontation of models with independent observations and large ensembles of
simulations are required to reduce uncertainty

◮ Modeling centers have a limited capacity to conduct sensitivity experiments and
systematically assess model fidelity, especially in fully coupled Earth system models

◮ Community-developed benchmarking tools are beginning to address part of the solution



International Land Model Benchmarking (ILAMB) Workshop
May 16–18, 2016, Washington, DC

The International Land Model Benchmarking (ILAMB)
community coordination activity was designed to

◮ Develop internationally accepted benchmarks

◮ Promote the use of these benchmarks

◮ Strengthen linkages between experimental, remote
sensing, and modeling communities

◮ Support the design and development of open source
benchmarking tools (Luo et al., 2012), like the ILAMB
Package (Collier et al., 2018)



ILAMB Assesses Land Model Fidelity Across Three Generations

◮ CLM saw improvements in mechanistic treatment of
hydrology, ecology, and land use with many more moving
parts

◮ Simulations improved even with enhanced complexity

◮ Observational datasets are not always self-consistent

◮ Forcing uncertainty confounds assessment of model
development (not shown)

http://webext.cgd.ucar.edu/I20TR/_build_set1F/

(Lawrence et al., 2019)



Land Model Performance Depends Strongly on Forcing

◮ Depending on the forcing used and the
metric selected, different models may perform
equally well

◮ ILAMB scores for CLM4, CLM4.5, and CLM5
forced with GSWP3 vs. CRUNCEP (above)
and the cumulative land carbon sink for
CMIP5 models vs. offline CLM (right).

(Bonan et al., 2019)



CMIP5 vs. CMIP6 Models

◮ The CMIP6 suite of land models (right) has
improved over the CMIP5 suite of land
models (left)

◮ The multi-model mean for CMIP5
outperforms any single CMIP5 model

◮ The multi-model mean for CMIP6
outperforms any single CMIP6 model

◮ The multi-model mean CMIP6 land model is
the “best model” overall

◮ Why did CMIP6 land models improve?

(Hoffman et al., in prep.)



CMIP5 and CMIP6 Land Model
Global GPP

◮ Most models of the same lineage improved
in various characteristics between CMIP5
and CMIP6

◮ The MeanCMIP5 and MeanCMIP6 models
perform the best

(Hoffman et al., in prep.)







Reasons for Land Model Improvements

ESM improvements in climate forcings (temperature, precipitation, radiation) likely partially
drove improvements exhibited by land carbon cycle models

(Hoffman et al., in prep.)



Reasons for Land Model Improvements

Differences in bias
scores for
temperature,
precipitation, and
incoming radiation
were primarily
positive, further
indicating more
realistic climate
representation

(Hoffman et al., in prep.)



Reasons for Land Model Improvements
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(Hoffman et al., in prep.)

While forcings got better, the largest improvements were in variable-to-variable relationships,
suggesting that further land model development (increased complexity?) was also partially
responsible for higher CMIP6 model scores



Improvements by Land Model
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(Hoffman et al., in prep.)



Interactive Exploration of Multi-Model Performance

https://www.ilamb.org/CMIP5v6/historical/chart.html



Land Model Spread in Net Ecosystem Carbon Balance

◮ The spread in the net ecosystem carbon
balance increased between CMIP5 and
CMIP6
◮ CMIP5 at 2005:

−215 Pg to 75 Pg → 290 Pg
◮ CMIP6 at 2010:

−360 Pg to 175 Pg → 535 Pg

◮ However, the range from most
multi-generation models was reduced

(Hoffman et al., in prep.)



Addressing Observational Uncertainty

◮ Few observational datasets provide complete uncertainties

◮ ILAMB uses multiple datasets for most variables and allows users to weight them
according to a rubric of uncertainty, scale mismatch, etc.

◮ ILAMB can also use:

◮ Full spatial/temporal
uncertainties provided
with data

◮ Fixed, expert-derived
uncertainty for a
dataset

◮ Uncertainties derived
from combining
multiple datasets (Collier et al., in prep.)

◮ Experiments with CLASS self-consistent data (Hobeichi et al., 2020) demonstrates that
while scores shift, including uncertainty rarely alters the rank ordering of models (figure)



Beyond Static Benchmarking

◮ To better support model development verification, we need to incorporate metrics from
manipulative experiments

◮ Simulated effect sizes of nitrogen versus CO2

enrichment on rates of net primary production
(NPP) calculated (a) globally or (b) for each plant
functional type in CLM4, 4.5, and 5

◮ Observational constraints for N response and CO2

response are shown with vertical and horizontal
polygons (mean ±95% confidence intervals)

◮ In (b), observed (open symbols) and simulated (filled
symbols) effect sizes of individual PFTs for woody
vegetation, C3 grasses, and C4 grasses (triangles,
circles, and diamonds, respectively) (Wieder et al., 2019)

◮ Much more work is needed to foster land model ensemble simulations and benchmarking,
including land model testbeds, diurnal and seasonal metrics, new synthesis datasets, . . .



Conclusions and Future Research

◮ Based on ILAMB model–data comparisons, CMIP6 land models improved over CMIP5 land
models due to 1) improved climate forcing; 2) improved process representation

◮ Variable-to-variable relationships exhibited the largest improvements for some models

◮ Thus, CMIP6 models are more valuable for impact and adaptation/mitigation analysis

◮ Model improvements in mean states and fluxes may not result in reduced uncertainty or
projected model spread

◮ Upon further examination, will improved multi-model performance result in reduced spread
in feedback sensitivities, projected land carbon storage, and future climate change?

◮ Can we use ILAMB scores to weight contributions to multi-model means and thereby
reduce contemporary biases, reduce future projected uncertainties, and alter expected
mitigation targets?
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