

### Forrest M. Hoffman<sup>†‡</sup> and James T. Randerson<sup>†</sup>

 $^\dagger\text{University}$  of California - Irvine and  $^\ddagger\text{Oak}$  Ridge National Laboratory

#### February 2, 2011

AmeriFlux Science Meeting & 3<sup>rd</sup> North American Carbon Program (NACP) All-Investigators Meeting

#### January 31–February 4, 2011

The Roosevelt Hotel, New Orleans, Louisiana, USA





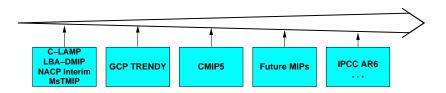
Department of Earth System Science School of Physical Sciences University of California - Irvine

Forrest M. Hoffman and James T. Randerson

International Land Model Benchmarking (ILAMB) Project

| Introduction | ILAMB Meeting | Benchmarks | Meeting Summary | Next Steps |  |
|--------------|---------------|------------|-----------------|------------|--|
| ILAMB (      | Goals         |            |                 |            |  |

- Develop benchmarks for land model performance, with a focus on carbon cycle, ecosystem, surface energy, and hydrological processes. The benchmarks should be designed and accepted by the community.
- Apply the benchmarks to global models.
- Support the design and development of a new, open-source, benchmarking software system for either diagnostic or model intercomparison purposes.
- Strengthen linkages between experimental, monitoring, remote sensing, and climate modeling communities in the design of new model tests and new measurement programs.


(本間) (本語) (本語)

| Introduction | ILAMB Meeting | Benchmarks | Meeting Summary | Next Steps |  |
|--------------|---------------|------------|-----------------|------------|--|
| Why Ber      | nchmark?      |            |                 |            |  |

- to show the broader science community and the public that the representation of the carbon cycle in climate models is improving;
- to provide a means, in Earth System models, to quantitatively diagnose impacts of model development in related fields on carbon cycle and land surface processes;
- to guide synthesis efforts, such as the Intergovernmental Panel on Climate Change (IPCC), in the review of mechanisms of global change in models that are broadly consistent with available contemporary observations;
- to increase scrutiny of key datasets used for model evaluation;
- to identify gaps in existing observations needed for model validation;
- to provide a quantitative, application-specific set of minimum criteria for participation in model intercomparison projects (MIPs);
- to provide an optional weighting system for multi-model mean estimates of future changes in the carbon cycle.



# An Open Source Benchmarking Software System



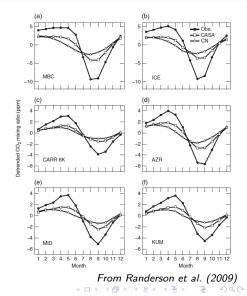
- Human capital costs of making rigorous model-data comparisons is considerable and constrains the scope of individual MIPs.
- Many MIPs spend resources "reinventing the wheel" in terms of variable naming conventions, model simulation protocols, and analysis software.
- Need for ILAMB: Each new MIP has access to the model-data comparison modules from past MIPs through ILAMB (*e.g.*, MIPs use one common modular software system). Standardized international naming conventions also increase MIP efficiency.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

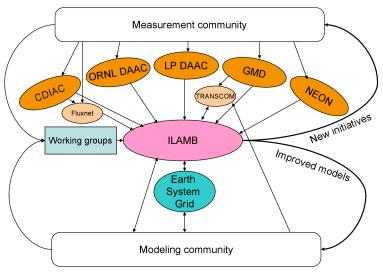
3

Introduction

**ILAMB** Meeting


Benchmarks

Meeting Summary


Next Steps

# What is a Benchmark?

- A benchmark is a quantitative test of model function, for which the uncertainties associated with the observations can be quantified.
- Acceptable performance on benchmarks is a necessary but not sufficient condition for a fully functioning model.
- Since all datasets have strengths and weaknesses, an effective benchmark is one that draws upon a broad set of independent observations to evaluate model performance on multiple temporal and spatial scales.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で



International Land Model Benchmarking project and diagnostic system

- **A B A B A B** 



- Meeting Co-organized by Forrest Hoffman (UC-Irvine and ORNL), Chris Jones (UK Met Office), Pierre Friedlingstein (U. Exeter and IPSL-LSCE), and Jim Randerson (UC-Irvine).
- About 45 researchers participated from the United States, Canada, the United Kingdom, the Netherlands, France, Germany, Switzerland, China, Japan, and Australia.

- Design the first set of ILAMB benchmarks for global models.
  - How many flavors (carbon cycle, LUC, hydrology, ...)?
  - What datasets do we include?
  - What graphics and cost functions?
- Coordinate carbon cycle and land model evaluation analyses for TRENDY and CMIP5 results.
- Develop an implementation plan for application of the ILAMB 1.0 benchmarks to TRENDY and CMIP5 output over next year.
- Decide upon the approach for developing ILAMB code.
  - netCDF for datasets? Language for evaluation code?
  - Need to extend variable naming conventions beyond CMIP5.
- Decide upon a future schedule and means to secure funding.
  - Key deadline is July 2012 for submission of manuscripts for IPCC AR5 Working Group 1.
  - Should ILAMB meet once a year until AR6?

## Example Benchmark Score Sheet from C-LAMP

|                       |                       |                                                                                                                            |                        | Models>             |                |           |       |     |      |
|-----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|----------------|-----------|-------|-----|------|
| Metric                |                       | Metric components                                                                                                          | Uncertainty<br>of obs. | Scaling<br>mismatch | Total<br>score | Sub-score | CASA' |     | CN   |
| LAI                   |                       | Matching MODIS observations                                                                                                |                        |                     | 15.0           |           | 13.5  |     | 12.0 |
|                       |                       | · Phase (assessed using the month of maximum LAI)                                                                          | Low                    | Low                 |                | 6.0       |       | 5.1 | 4    |
|                       |                       | · Maximum (derived separately for major biome classes)                                                                     | Moderate               | Low                 |                | 5.0       |       | 4.6 | 4    |
|                       |                       | <ul> <li>Mean (derived separately for major biome classes)</li> </ul>                                                      | Moderate               | Low                 |                | 4.0       |       | 3.8 | 3    |
| NPP                   | ,                     | Comparisons with field observations and satellite products                                                                 |                        |                     | 10.0           |           | 8.0   | -   | 8.2  |
|                       |                       | · Matching EMDI Net Primary Production observations                                                                        | High                   | High                |                | 2.0       |       | 1.5 | 1    |
|                       |                       | · EMDI comparison, normalized by precipitation                                                                             | Moderate               | Moderate            |                | 4.0       |       | 3.0 | 3    |
|                       |                       | <ul> <li>Correlation with MODIS (r<sup>2</sup>)</li> </ul>                                                                 | High                   | Low                 |                | 2.0       |       | 1.6 | 1    |
|                       |                       | <ul> <li>Latitudinal profile comparison with MODIS (r<sup>2</sup>)</li> </ul>                                              | High                   | Low                 |                | 2.0       |       | 1.9 | 1    |
| CO <sub>2</sub> annua | l cycle               | Matching phase and amplitude at Globalview flash sites                                                                     | -                      |                     | 15.0           |           | 10.4  |     | 7.7  |
| - /                   |                       | • 60°-90°N                                                                                                                 | Low                    | Low                 |                | 6.0       |       | 4.1 | 2    |
|                       |                       | • 30°-60°N                                                                                                                 | Low                    | Low                 |                | 6.0       |       | 4.2 | 3    |
|                       |                       | • 0°-30°N                                                                                                                  | Moderate               | Low                 |                | 3.0       |       | 2.1 | 1    |
| Energy & CO           | D <sub>2</sub> fluxes | Matching eddy covariance monthly mean observations                                                                         |                        |                     | 30.0           |           | 17.2  |     | 16.6 |
|                       |                       | <ul> <li>Net ecosystem exchange</li> </ul>                                                                                 | Low                    | High                |                | 6.0       |       | 2.5 | 2    |
|                       |                       | <ul> <li>Gross primary production</li> </ul>                                                                               | Moderate               | Moderate            |                | 6.0       |       | 3.4 | 3    |
|                       |                       | Latent heat                                                                                                                | Low                    | Moderate            |                | 9.0       |       | 6.4 | 6    |
|                       |                       | Sensible heat                                                                                                              | Low                    | Moderate            |                | 9.0       |       | 4.9 | 4    |
| Transient dy          | /namics               | Evaluating model processes that regulate carbon exchange                                                                   |                        |                     | 30.0           |           | 16.8  |     | 13.8 |
|                       |                       | on decadal to century timescales                                                                                           |                        |                     |                |           |       |     |      |
|                       |                       | · Aboveground live biomass within the Amazon Basin                                                                         | Moderate               | Moderate            |                | 10.0      |       | 5.3 | 5    |
|                       |                       | <ul> <li>Sensitivity of NPP to elevated levels of CO<sub>2</sub>: comparison<br/>to temperate forest FACE sites</li> </ul> | Low                    | Moderate            |                | 10.0      |       | 7.9 | 4    |
|                       |                       | <ul> <li>Interannual variability of global carbon fluxes:<br/>comparison with TRANSCOM</li> </ul>                          | High                   | Low                 |                | 5.0       |       | 3.6 | 3    |
|                       |                       | <ul> <li>Regional and global fire emissions: comparison to<br/>GFEDv2</li> </ul>                                           | High                   | Low                 |                | 5.0       |       | 0.0 | 1    |
|                       |                       |                                                                                                                            |                        | Total:              | 100.0          |           | 65.9  | -   | 58.3 |

From Randerson et al. (2009)

3

Introduction

|                             | Annual                | Seasonal | Interannual |       |                        |
|-----------------------------|-----------------------|----------|-------------|-------|------------------------|
|                             | Mean                  | Cycle    | Variability | Trend | Data Source            |
| Atmospheric CO <sub>2</sub> |                       |          |             |       |                        |
| Flask/conc. + transport     |                       | ~        | √           | √     | NOAA, SIO, CSIRO       |
| TCCON + transport           |                       | √        | √           | √     | Caltech                |
| Fluxnet                     |                       | •        |             |       | •                      |
| GPP, NEE, TER, LE, H, RN    | ~                     | √        | ✓           |       | Fluxnet, MAST-DC       |
| Gridded: GPP                | ✓                     | ✓        | ?           |       | MPI-BGC                |
| Hydrology/Energy            |                       |          |             |       |                        |
| river flow                  | ~                     |          | ✓           |       | GRDC, Dai, GFDL        |
| global runoff/ocean balance | ✓                     |          |             |       | Syed/Famiglietti       |
| albedo (multi-band)         |                       | ✓        | ✓           |       | MODIS, CERES           |
| soil moisture               |                       | √        | ~           |       | de Jeur, SMAP          |
| column water                |                       | ✓        | ✓           |       | GRACE                  |
| snow cover                  | ~                     | ✓        | ✓           | ✓     | AVHRR, GlobSnow        |
| snow depth/SWE              | ~                     | √        | ~           | √     | CMC (N. America)       |
| T <sub>air</sub> & P        | <ul> <li>✓</li> </ul> | ✓        | ✓           | √     | CRU, GPCP and TRMM     |
| Gridded: LE, H              | ✓                     | ✓        |             |       | MPI-BGC, dedicated ET  |
| Ecosystem Processes & State |                       |          |             |       |                        |
| soil C, N                   | ✓                     |          |             |       | HWSD, MPI-BGC          |
| litter C, N                 | ✓                     |          |             |       | LIDET                  |
| soil respiration            | ~                     | ?        | ✓           | √     | Bond-Lamberty          |
| FAPAR                       | ✓                     | ✓        |             |       | MODIS, SeaWIFS         |
| biomass & change            | ✓                     |          |             | √     | Saatchi, Pan, Blackard |
| canopy height               | <ul> <li>✓</li> </ul> |          |             |       | Lefsky, Fisher         |
| NPP                         | ~                     |          |             |       | EMDI, Luyssaert        |
| Vegetation Dynamics         |                       |          |             |       |                        |
| fire — burned area          | ~                     | ✓        | ✓           |       | GFED3                  |
| wood harvest                | ✓                     |          |             | ✓     | Hurtt                  |
| land cover                  | <ul> <li>✓</li> </ul> |          |             |       | MODIS PFT fraction     |

Forrest M. Hoffman and James T. Randerson

International Land Model Benchmarking (ILAMB) Project

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 -

| Introduction | ILAMB Meeting | Benchmarks | Meeting Summary | Next Steps |
|--------------|---------------|------------|-----------------|------------|
| Meeting      | Summary       |            |                 |            |

- Five break-out groups met, one for each benchmark category, to identify cost function metrics and graphics.
- Measurement and model uncertainty need to be characterized and spatial scaling mismatch considered for effective evaluation.
- Key objectives are to use publicly available data and freely available software tools.
- The R package will be used for generating statistical results and diagnostics.
- Site-level and the new gridded Fluxnet data will play a crucial role.



International Land Model Benchmarking (ILAMB) Project

| Introduction | ILAMB Meeting | Benchmarks | Meeting Summary | Next Steps |  |
|--------------|---------------|------------|-----------------|------------|--|
| Next Ste     | eps           |            |                 |            |  |

- A team was identified to begin software architecture design.
- Five benchmarks will be implemented initially and used to evaluate existing model results from TRENDY and CMIP5.
- Common model output
  - A draft document proposing additional new netCDF Climate and Forecast (CF) conventions, beyond those created for CMIP5, is available for comment.
  - To assist the modeling community, a translator between ALMA and CF standards will be created.
- Model results will be shared on the Earth System Grid (ESG).
- Future: New protocols and forcing data comparisons.

### International Land Model Benchmarking (ILAMB) Project http://www.ilamb.org/

イロン イヨン イヨン イヨン

э

J. T. Randerson, F. M. Hoffman, P. E. Thornton, N. M. Mahowald, K. Lindsay, Y.-H. Lee, C. D. Nevison, S. C. Doney, G. Bonan, R. Stöckli, C. Covey, S. W. Running, and I. Y. Fung. Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. *Global Change Biol.*, 15(9):2462–2484, Sept. 2009. doi:10.1111/j.1365-2486.2009.01912.x.

(人間) とうり くうり