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Quantitative Sampling Network Design

• Resource and logistical constraints limit the frequency and extent of observations, ne-
cessitating the development of a systematic sampling strategy that objectively repre-
sents environmental variability at desired spatial scales.

• Required is a methodology that provides a quantitative framework for informing site
selection and determining the representativeness of measurements.

• Multivariate spatiotemporal clustering (MSTC) was applied at the landscape scale
(4 km×4 km) globally to demonstrate its utility for representativeness and scaling.

• Method recently used to quantify representativeness of candidate sampling sites for
the State of Alaska (Hoffman et al., 2013).

• An extension of the method applied by Hargrove and Hoffman for design of National
Science Foundation’s (NSF’s) National Ecological Observatory Network (NEON) do-
mains (Schimel et al., 2007; Keller et al., 2008).

Ecoregions

Table 1: 17 data layers used for this analysis (Potter and Hargrove, 2013).

Variable Description Units

Bioclimatic Variables
Precipitation during the hottest quarter mm
Precipitation during the coldest quarter mm
Precipitation during the driest quarter mm
Precipitation during the wettest quarter mm
Ratio of precipitation to potential evapotranspiration unitless
Temperature during the coldest quarter ◦C
Temperature during the hottest quarter ◦C
Day/night diurnal temperature difference ◦C
Sum of monthly Tavg where Tavg ≥ 5◦C ◦C
Integer number of consecutive months where Tavg ≥ 5◦C unitless

Edaphic Variables
Available water holding capacity of soil unitless
Bulk density of soil g/cm3

Carbon content of soil g/cm2

Nitrogen content of soil g/cm2

Topographic Variables
Compound topographic index (relative wetness) unitless
Solar interception kW/m2

Elevation m

10 Global Ecoregions, Random Colors

Figure 1: The 10 most different ecoregions globally are shown in random colors. No-
tice that areas with similar environmental characteristics are colored the same no matter
where they occur on Earth.

50 Global Ecoregions, Random Colors

Figure 2: The 50 most different ecoregions globally are shown in random colors. No-
tice that areas with similar environmental characteristics are colored the same no matter
where they occur on Earth.

Label Stealing

Automated Supervision for Unsupervised Classification
• Clustering is an unsupervised classification technique, so ecoregions have no descrip-
tive labels (e.g., Eastern Deciduous Forest Biome).

• Label stealing allows us to perform automated “supervision” by “stealing” the best
corresponding human-created descriptive labels to assign to ecoregions.

• We employ a tool called Mapcurves to select the best ecoregion labels from ecore-
gionalizations delineated by human experts.

• We consider an entire library of ecoregion and land cover maps, and choose the label
with the highest goodness-of-fit (GOF) score for every ecoregions polygon.

Mapcurves: A Method for Comparing Categorical Maps
• Hargrove et al. (2006) developed a method for quantitatively comparing categorical
maps that is
– independent of differences in resolution,
– independent of the number of categories in maps, and
– independent of the directionality of comparison.
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• GOF provides “credit” for area of overlap, but also “debit” for area of non-overlap.
• Mapcurves comparisons allow us to reclassify any map in terms of any other map (i.e.,
color Map 2 like Map 1).

• A grayscale GOF map shows the degree of correspondence between two maps based
on the highest GOF score.

Expert-Derived Land Cover/Vegetation Type Maps

Foley Land Cover

Holdridge Life Zones

Expert Map # Cats
1. DeFries UMd Vegetation 12
2. Foley Land Cover 14
3. Fedorova, Volkova, and Varlyguin

World Vegetation Cover
31

4. GAP National Land Cover 578
5. Holdridge Life Zones 25
6. Küchler Types 117
7. BATS Land Cover 17
8. IGBP Land Cover 16
9. Olson Global Ecoregions 49

10. Seasonal Land Cover Regions 194
11. USGS Land Cover 24
12. Leemans-Holdridge Life Zones 26
13. Matthews Vegetation Types 19
14. Major Land Resource Areas 197
15. National Land Cover Database

2006
16

16. Wilson, Henderson, & Sellers
Primary Vegetation Types

23

17. Landfire Vegetation Types 443
18. ESA Global Land Cover 23

50 Ecoregions Reclassified by Label Stealing

Figure 3: The 50 quantitatively derived global ecoregions are reduced to 12 broadly
defined land cover classes through the Label Stealing process.

Representativeness

Global Forest Site Representativeness
• Representativeness analysis uses the standardized n-dimensional data space formed
from all 17 input data layers shown in Table 1.

• In this data space, the Euclidean distance between a sampling location (like Manaus,
Brazil) and every other point is calculated.

• Data space distances are used to generate grayscale maps showing the degree of
similarity, or lack thereof, of every location to the sampling location.

• Below, white areas are well represented by the sampling location or network, while
dark and black areas as poorly represented by the sampling location or network.

ForestGEO Network Global Representativeness

(Anderson-Teixeira et al., 2015)

Figure 4: Map of ForestGEO network representation. Stippling covers non-forest areas
as determined by Label Stealing.

Triple-Network Global Representativeness

Figure 5: Map indicates the sampling networks that offer the most representative cover-
age for any location. Every location is made up of a combination of three primary colors
from Fluxnet (red), ForestGEO (green), and RAINFOR (blue).

Conclusions and Next Steps

• Multivariate Spatiotemporal Clustering (MSTC) provides a quantitative framework
for stratifying sampling domains, informing site selection, and determining representa-
tiveness of measurements.

• Label Stealing offers a useful means for interpreting and understanding ecoregion or
sampling domain delineation.

• Representativeness Analysis provides a systematic approach for up-scaling point
measurements to larger domains.

• Methodology is independent of resolution and surrogate data, thus can be applied
from site/plot scale to landscape/global scale with site measurements, remote sensing,
and models.

Next Steps for Tropical Site Selection
• Input data layers must be selected to capture important environmental gradients re-
lated to carbon cycle drivers.

• A more careful analysis of existing sampling sites should consider type, frequency, and
protocol of measurements.

• Observation data may be paired with projected changes in climate and atmospheric
CO2 levels to estimate how ecoregions may reorganize in the future.

• Method will be used to develop an optimized network of tropical forest sampling sites
to answer key science questions.
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