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Sampling Domain Representativeness



Next-Generation Ecosystem Experiments (NGEE Arctic)
Representativeness and Scaling
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Quantitative Sampling Network Design

» Resource and logistical constraints limit the frequency and
extent of observations, necessitating the development of a
systematic sampling strategy that objectively represents
environmental variability at the desired spatial scale.

» Required is a methodology that provides a quantitative
framework for informing site selection and determining the
representativeness of measurements.

» Multivariate spatiotemporal clustering (MSTC) was applied at
the landscape scale (4 km?) for the State of Alaska to
demonstrate its utility for representativeness and scaling.

» An extension of the method applied by Hargrove and Hoffman
for design of National Science Foundation's (NSF's) National
Ecological Observatory Network (NEON) domains.



Table: 37 variables averaged for 20002009 and 2090-2099

Description Number/Name Units Source
Monthly mean air temperature 12 °C GCM
Monthly mean precipitation 12 mm GCM
mean day of year GCM
Day of freeze standard deviation days
mean day of year GCM
Day of thaw standard deviation days
. mean days GCM
Length of growing season standard deviation days
Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 °C GIPL
Mean annual ground temperature °
at bottom of active layer 1 c GIPL
Mean annual ground surface tem- 1 oC GIPL
perature
Thermal offset 1 °C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM




10 Alaska Ecoregions (2000-2009)
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Each ecoregion is a different random color. Blue filled circles mark
locations most representative of mean conditions of each region.



10 Alaska Ecoregions (2090-2099)
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Each ecoregion is a different random color. Blue filled circles mark
locations most representative of mean conditions of each region.



10 Alaska Ecoregions, Present and Future

2000-2009 2090-2099

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At this level of division, the conditions in the large boreal forest
become compressed onto the Brooks Range and the conditions on
the Seward Peninsula “migrate” to the North Slope.



20 Alaska Ecoregions, Present and Future

2000-2009 2090-2099

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At this level of division, the two primary regions of the Seward
Peninsula and that of the northern boreal forest replace the two
regions on the North Slope almost entirely.



50 and 100 Alaska Ecoregions, Present
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Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At high levels of division, some regions vanish between the present
and future while other region representing new combinations of
environmental conditions come into existence.



NGEE Arctic Site Representativeness

» This representativeness analysis uses the standardized
n-dimensional data space formed from all input data layers.

» In this data space, the Euclidean distance between a sampling
location (like Barrow) and every other point is calculated.

» These data space distances are then used to generate
grayscale maps showing the similarity, or lack thereof, of every
location to the sampling location.

» In the subsequent maps, white areas are well represented by
the sampling location or network, while dark and black areas
as poorly represented by the sampling location or network.

» This analysis assumes that the climate surrogates maintain
their predictive power and that no significant biological
adaptation occurs in the future.



Present Representativeness of Barrow or “Barrow-ness”
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Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



Present vs. Future Barrow-ness
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As environmental conditions change, due primarily to increasing
temperatures, climate gradients increase and the representativeness
of Barrow will be diminished in the future.



Council and Prudhoe Bay Representativeness
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Representativeness analysis was performed for sites at Barrow,
Council, Atqasuk, lvotuk, Kougarok, Prudhoe Bay, Toolik Lake,
and Fairbanks.



Network Representativeness: Barrow + Council
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Network Representativeness: All 8 Sites
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State Space Dissimilarity: 8 Sites, Present (2000-

Table: Site state space distances for the present (2000-2009) with DEM

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 9.13 453 590 5.87 7.98 3.57 12.16

Council 8.69 6.37 7.00 2.28 8.15 5.05
Atqgasuk 5.18 5.23 7.79 1.74 10.66
Ivotuk 1.81 5.83 4.48 7.90
Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57

Prudhoe Bay 10.38




State Space Dissimilarity: 8 Sites, Future (2090-2099)

Table: Site state space distances for the future (2090-2099) with DEM

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 8.87 489 6.88 6.94 8.04 4.18 11.95

Council 8.82 6.93 7.74 2.43 8.24 5.66
Atgasuk 586 b5.84 8.15 2.30 10.16
lvotuk 2.01 7.27 4.75 7.51
Toolik Lake 7.81 5.00 8.33
Kougarok 7.89 6.42

Prudhoe Bay 9.81




State Space Dissimilarity: 8 Sites, Present and Future

Table: Site state space distances between the present (2000-2009) and

the future (2090-2099) with DEM

Future (2090-2099)

Toolik Prudhoe
Sites Barrow Council Atqasuk lvotuk Lake Kougarok Bay Fairbanks
N Barrow 3.31 9.67 4.63 6.05 5.75 9.02 3.69 11.67
§ Council 838 165 810 591 6.87 3.10 7.45 5.38
< Atqasuk 6.01 9.33 242 546 5.26 8.97 2.63 10.13
S Ivotuk 7.06 7.17 5.83 153 2.05 7.25 4.87 7.40
& Toolik Lake 7.19 7.67 6.07 248 1.25 7.70 5.23 8.16
e  Kougarok 7.29 3.05 6.92 557 631 251 6.54 5.75
ﬁ Prudhoe Bay 5.29 880 3.07 4.75 4.69 8.48 1.94 9.81
a Fairbanks 12.02 549 1036 7.83 8.74 6.24 10.10 1.96




Representativeness: A Quantitative Approach for Scaling

MSTC provides a quantitative framework for stratifying
sampling domains, informing site selection, and determining
representativeness of measurements.

Representativeness analysis provides a systematic approach for
up-scaling point measurements to larger domains.
Methodology is independent of resolution, thus can be applied
from site/plot scale to landscape/climate scale.

It can be extended to include finer spatiotemporal scales,
more geophysical characteristics, and remote sensing data.

Paper describing the methodology is in press:

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove
(2013) “Representativeness-Based Sampling Network Design for
the State of Alaska.” Landscape Ecol., in press.
doi:10.1007/s10980-013-9902-0.


http://dx.doi.org/10.1007/s10980-013-9902-0

Developing Phenoregion Maps Using Remotely Sensed Imagery



The USDA Forest Service, NASA Stennis Space Center, and DOE
Oak Ridge National Laboratory are creating a system to monitor
threats to U.S. forests and wildlands at two different scales:

» Tier 1. Strategic — The ForWarn System that routinely
monitors wide areas at coarser resolution, repeated frequently
— a change detection system to produce alerts or warnings
for particular locations may be of interest

» Tier 2: Tactical — Finer resolution airborne overflights and
ground inspections of areas of potential interest — Aerial
Detection Survey (ADS) monitoring to determine if such
warnings become alarms

Tier 2 is largely in place, but Tier 1 is needed to optimally direct
its labor-intensive efforts and discover new threats sooner.



Design Plan for the ForWarn Early Warning System

Other data sources
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% Change in NDVI

ForWarn is forest change recognition and tracking system that uses
high-frequency, moderate resolution satellite data to provide near real-time
forest change maps for the continental United States that are updated every
eight days. Maps and data products are available in the Forest Change
Assessment Viewer at http://forwarn.forestthreats.org/fcav/



http://forwarn.forestthreats.org/fcav/

Clustering MODIS NDVI into Phenoregions

» Hoffman and Hargrove previously used k-means clustering to
detect brine scars from hyperspectral data (Hoffman, 2004)
and to classify phenologies from monthly climatology and 17
years of 8 km NDVI from AVHRR (White et al., 2005).

» This data mining approach, using high performance
computing, was applied to the entire body of the high
resolution MODIS NDVI record for the continental U.S.

» >80B NDVI values, consisting of ~146.4M cells for the
CONUS at 250 m resolution with 46 maps per year for
12 years (2000-2011), analyzed using k-means clustering.

» The annual traces of NDVI for every year and map cell are
combined into one 323 GB single-precision binary data set of
46-dimensional observation vectors.

» Clustering yields 12 maps in which each cell is classified into

one of k phenoclasses, and phenoregions form representative
prototype annual NDVI traces.



50 Phenoregions for year 2011 (Random Colo




50 Phenoregion Prototypes (Random Colors)
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50 Phenoregions Persistence (Random Colors)




50 Phenoregions Mode (Random Colors)




50 Phenoregions Max Mode (Random Colors)




50 Phenoregions Max Mode (Similarity Colors)




50 Phenoregions Max Mode (Similarity Colors Lege
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Phenoregions Clearinghouse

National Phenol Google Chrome
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National Phenological Ecoregions (2000-2011)
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William W. Haigrove, Farrest M. Hoffman, Jitendra Kumar, Joseph P. Spruce, and Richard T. Mills
January 14, 2013

Jump to 50 National Phenoregions
Jump to 100 National Phenoregions
Jump to 200 National Phenoregions

Jump to 500 National Phenoregions

Jump to 1000 National Phenoregions

Jump to 5000 National Phenoregions

50 Most-Different National Phenological Ecoregions (2000-2011)




U Fall Meeting Session

IN006. Big Data in the Geosciences: New Analytics Methods and Parallel
Algorithms

Co-conveners: Jitendra Kumar (ORNL), Robert Jacob (ANL), Don Middleton
(NCAR), and Forrest Hoffman (ORNL)

Confirmed Invited Presenters:
> Gary Geernaert (U.S. Dept. of Energy)
» Matt Hancher (Google Earth Engine)
» Jeff Daily (Pacific Northwest National Laboratory)
> William Hargrove (USDA Forest Service)

Earth and space science data are increasingly large and complex, often representing
long time series or high resolution remote sensing, making such data difficult to
analyze, visualize, interpret, and understand. The proliferation of heterogeneous,
multi-disciplinary observational and model data have rendered traditional means of
analysis and integration ineffective. This session focuses on development and
applications of data analytics (statistical, data mining, machine learning, etc.)
approaches and software for the analysis, assimilation, and synthesis of large or long
time series Earth science data that support integration and discovery in climatology,
hydrology, geology, ecology, seismology, and related disciplines.

Abstract submissions are due August 6.
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