Quantification and Reduction of Uncertainties Associated with Carbon Cycle–Climate System Feedbacks

Forrest M. Hoffman

Computational Earth Sciences Group (CESG) Oak Ridge National Laboratory (ORNL)

Computational Earth Sciences Group Leader Interview

February 25, 2020

CLIMATE CHANGE SCIENCE INSTITUTE National Laboratory

OAK RIDGE NATIONAL LABORATORY

Forrest M. Hoffman: Computational Earth System Scientist at ORNL

31 years at ORNL; 26 years as staff in ESD, CSMD, and CSED

- B.S. (1991) and M.S. (2004) in Physics from University of Tennessee, Knoxville; M.S. (2012) and Ph.D. (2015) in Earth System Science from University of California, Irvine
- develop and apply Earth system models to study global biogeochemical cycles, including terrestrial & marine carbon cycle
- investigate methods for reconciling uncertainties in carbon
 cycle–climate feedbacks through comparison with observations
- apply artificial intelligence methods (machine learning and data mining) to environmental characterization, simulation, & analysis
- Joint Faculty Professor, University of Tennessee, Knoxville, Department of Civil & Environmental Engineering

How well do Earth System Models (ESMs) simulate the observed distribution of anthropogenic carbon in atmosphere, ocean, and land reservoirs?

How well do Earth System Models (ESMs) simulate the observed distribution of anthropogenic carbon in atmosphere, ocean, and land reservoirs?

Question 2

Can contemporary atmospheric CO₂ observations be used to constrain future CO₂ projections?

How well do Earth System Models (ESMs) simulate the observed distribution of anthropogenic carbon in atmosphere, ocean, and land reservoirs?

Question 2

Can contemporary atmospheric CO₂ observations be used to constrain future CO₂ projections?

Question 3

Can we design a strategy for objectively sampling diverse environmental gradients using models and measurements?

How well do Earth System Models (ESMs) simulate the observed distribution of anthropogenic carbon in atmosphere, ocean, and land reservoirs?

Question 2

Can contemporary atmospheric CO₂ observations be used to constrain future CO₂ projections?

Question 3

Can we design a strategy for objectively sampling diverse environmental gradients using models and measurements?

Community Model Benchmarking

Systematic assessment of model fidelity, employing best-available observational data, can identify model weaknesses and inspire new measurements.

Observed Carbon Accumulation Since 1850

Year

Observational estimates of anthropogenic carbon emissions (excluding land use change) and accumulation in atmosphere, ocean, and land reservoirs for 1850–2010. Atmosphere carbon is a fusion of Law Dome ice core CO_2 observations, the Keeling Mauna Loa record, and more recently the NOAA GMD global surface average, integrated for the purpose of forcing IPCC models. Total land flux is computed by mass balance as follows:

$$\Delta C_L = \sum_i F_i - \Delta C_A - \Delta C_O.$$

Model	Modeling Center
BCC-CSM1.1	Beijing Climate Center, China Meteorological Administration, CHINA
BCC-CSM1.1(m)	Beijing Climate Center, China Meteorological Administration, CHINA
BNU-ESM	Beijing Normal University, CHINA
CanESM2	Canadian Centre for Climate Modelling and Analysis, CANADA
CESM1-BGC	Community Earth System Model Contributors, NSF-DOE-NCAR, USA
FGOALS-s2.0	LASG, Institute of Atmospheric Physics, CAS, CHINA
GFDL-ESM2g	NOAA Geophysical Fluid Dynamics Laboratory, USA
GFDL-ESM2m	NOAA Geophysical Fluid Dynamics Laboratory, USA
HadGEM2-ES	Met Office Hadley Centre, UNITED KINGDOM
INM-CM4	Institute for Numerical Mathematics, RUSSIA
IPSL-CM5A-LR	Institut Pierre-Simon Laplace, FRANCE
MIROC-ESM	Japan Agency for Marine-Earth Science and
	Technology, Atmosphere and Ocean Research Institute
	(University of Tokyo), and National Institute for
	Environmental Studies, JAPAN
MPI-ESM-LR	Max Planck Institute for Meteorology, GERMANY
MRI-ESM1	Meteorological Research Institute, JAPAN
NorESM1-ME	Norwegian Climate Centre, NORWAY

15 ESMs that performed CMIP5 emissions-forced simulations

CMIP5 Long-Term Experiments

Emissions for Historical + RCP 8.5 Simulations

(a) Most ESMs exhibited a high bias in predicted atmospheric CO_2 mole fraction, which ranged from 357–405 ppm at the end of the historical period (1850–2005).

(b) The multi-model mean was biased high from 1946 throughout the 20th century, ending 5.6 ppm above the observed value of 378.8 ppm in 2005.

Model inventory comparison with Khatiwala et al. (2013)

Atmosphere (1850-2010) Ocean (1850-2010) 300 oon (Pg C) ic Carbon (Pg C) 250 200 200 150 100 Observations BCC-CSM1.1 C-CSM1.1-M BNU-ESM CanESM2 anESM2 Land (1850-2010) Ocean/Atmosphere (1850-2010) ic Carbon (Pg C) 50 0.8 Carbon -50 -100 토 -150 -200

Once normalized by their atmospheric carbon inventories, most ESMs exhibited a low bias in anthropogenic ocean carbon accumulation through 2010.

The same pattern holds for the Sabine et al. (2004) inventory derived using the ΔC^* separation technique.

(a) Ocean inventory estimates had a fairly persistent ordering during the second half of the 20^{th} century.

(b) ESMs exhibited a wide range of land carbon accumulation responses to increasing CO_2 and land use change, ranging from a net source of 170 Pg C to a sink of 107 Pg C in 2010.

ESM Historical Ocean and Land Carbon Accumulation

How well do Earth System Models (ESMs) simulate the observed distribution of anthropogenic carbon in atmosphere, ocean, and land reservoirs?

- Most ESMs exhibited a high bias in predicted atmospheric CO₂ mole fraction, ranging from 357–405 ppm in 2005.
- The multi-model mean atmospheric CO₂ mole fraction was biased high from 1946 onward, ending 5.6 ppm above observations in 2005.
- Once normalized by atmospheric carbon accumulation, most ESMs exhibited a low bias in ocean accumulation in 2010.
- ESMs predicted a wide range of land carbon accumulation in response to increasing CO₂ and land use change, ranging from -170-107 Pg C in 2010.

Year

ESM RCP 8.5 Atmospheric CO₂ Mole Fraction

Question 2

Can contemporary atmospheric CO_2 observations be used to constrain future CO_2 projections?

To reduce feedback uncertainties using contemporary observations,

1. there must be a relationship between contemporary variability and future trends on longer time scales within the model, and

To reduce feedback uncertainties using contemporary observations,

- 1. there must be a relationship between contemporary variability and future trends on longer time scales within the model, and
- 2. it must be possible to constrain contemporary variability in the model using observations.

To reduce feedback uncertainties using contemporary observations,

- 1. there must be a relationship between contemporary variability and future trends on longer time scales within the model, and
- 2. it must be possible to constrain contemporary variability in the model using observations.

Example #1

Hall and Qu (2006) evaluated the strength of the springtime snow albedo feedback (SAF; $\Delta \alpha_s / \Delta T_s$) from 17 models used for the IPCC AR4 and compared them with the observed springtime SAF from ISCCP and ERA-40 reanalysis.

To reduce feedback uncertainties using contemporary observations,

- 1. there must be a relationship between contemporary variability and future trends on longer time scales within the model, and
- 2. it must be possible to constrain contemporary variability in the model using observations.

Example #2

Cox et al. (2013) used the observed relationship between the CO₂ growth rate and tropical temperature as a constraint to reduce uncertainty in the land carbon storage sensitivity to climate change (γ_L) in the tropics using C⁴MIP models.

I discovered a new emergent constraint based on carbon inventories.

A relationship exists between contemporary and future atmospheric CO_2 levels over decadal time scales because carbon model biases persist over decadal time scales.

The observed contemporary atmospheric CO_2 mole fraction is represented by the vertical line at 384.6 \pm 0.5 ppm.

Future vs. Contemporary Atmospheric CO₂ Mole Fraction

Contemporary (2010) CO2 Mole Fraction (ppm)

Removing pre-industrial CO_2 mole fraction biases from models, I found the relationship held, confirming the robustness of the result.

Observed contemporary anthropogenic atmospheric carbon inventory is represented by the vertical line at 213.4 ± 6.5 Pg C, which incorporates 1850 CO_2 mole fraction uncertainties.

Adding uncertainties from fossil fuel emissions increased the uncertainty to ± 12.7 Pg C.

Future vs. Contemporary Atmospheric Accumulation

Contemporary (2010) Accumulation (Pg C)

R² of Multi-model Bias Structure

Year

The coefficients of determination (R^2) for the multi-model bias structure relative to the set of CMIP5 model atmospheric CO₂ mole fractions (black), and oceanic (blue) and land (green) anthropogenic carbon inventories in 2010. Atmospheric CO₂ mole fractions are statistically significant for 1910–2100. Bias persistence was highest for the ocean, followed by land, and then by the atmosphere.

I used this regression to create a contemporary CO_2 tuned model (CCTM) estimate of the atmospheric CO_2 trajectory for the 21st century.

- Peak probability densities of CO₂ mole fraction predictions were lower for the CCTM than the multi-model means.
- The ranges of uncertainty were smaller by almost a factor of 6 at 2060 and almost a factor of 5 at 2100.

Probability Density of Atmospheric CO₂ Mole Fraction

At 2060: 600 ± 14 ppm, 21 ppm below the multi-model mean At 2100: 947 \pm 35 ppm, 32 ppm below the multi-model mean

I calculated the CO₂ radiative forcing and used an impulse response function (tuned to the mean transient climate response of CMIP5 models) to equitably compute the resulting CO₂-induced temperature change (ΔT_{CO_2}) for models and the CCTM. The CO₂ biases for individual models contributed to ΔT_{CO_2} biases of -0.7°C to +0.6°C by 2100, relative to the CCTM estimate.

I also developed a multi-model constraint on the evolution of ocean and land anthropogenic inventories. Since observational uncertainties are higher for ocean and land, uncertainties in future estimates cannot be reduced as much as for atmospheric CO_2 .

Can we use contemporary CO_2 observations to constrain future CO_2 projections?

Yes.

- I developed a new emergent constraint from anthropogenic carbon inventories in atmosphere, ocean, and land reservoirs.
- Land and ocean processes contributing to contemporary carbon cycle biases persist over decadal timescales.
- I used the relationship between contemporary and future atmospheric CO₂ levels to create a contemporary CO₂ tuned model (CCTM) estimate for the 21st century.
 - At 2060: 600 \pm 14 ppm, 21 ppm below the multi-model mean.
 - At 2100: 947 \pm 35 ppm, 32 ppm below the multi-model mean.
- Uncertainties in future climate predictions may be reduced by improving models to match the long-term time series of CO₂ from Mauna Loa and other monitoring stations.

Implications of CO₂ Biases in ESMs

- Most of the model-to-model variability of CO₂ in the 21st century was traced to biases that existed at the end of the observational record.
- Future fossil fuel emissions targets designed to stabilize CO₂ levels would be too low if estimated from the multi-model mean of ESMs.
- Models could be improved through extensive comparison with sustained observations and community model benchmarking.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

District on special action activity under discovers of the Constant Converses antihulutes house and disclusive taxara, which parents use and distribution is any underst parents discovers and activity of the discoverse activity of the discoverse activity of the modification or adaptations are made. Anthropost analysis of individual schip perchange pairs into the amorphic schip double (SQ), are supported by managing the loader of these gains an address of the lattice change of flaqued and (J.G. Gonzald, 2014). The perchanges on these gains and address of the lattice change of the schip of the double of the schip of the double of the schip of the double of the schip of the sc Hoffman, Forrest M., James T. Randerson, Vivek K. Arora, Qing Bao, Patricia Cadule, Duoying Ji, Chris D. Jones, Michio Kawamiya, Samar Khatiwala, Keith Lindsay, Atsushi Obata, Elena Shevliakova, Katharina D. Six, Jerry F. Tjiputra, Evgeny M. Volodin, and Tongwen Wu (2014), Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models, *J. Geophys. Res. Biogeosci.*, 119(2):141–162, doi:10.1002/2013JG002381.

Can we design a strategy for objectively sampling diverse environmental gradients using models and measurements?

- Resource and logistical constraints limit the frequency and extent of observations, necessitating the development of a systematic sampling strategy that objectively represents environmental variability at the desired spatial scale.
- Required is a methodology that provides a quantitative framework for informing site selection and determining the representativeness of measurements.
- Multivariate spatiotemporal clustering (MSTC) was applied at the landscape scale (4 km²) for the State of Alaska to demonstrate its utility for representativeness and scaling.
- An extension of the method applied by Hargrove and Hoffman for design of National Science Foundation's (NSF's) National Ecological Observatory Network (NEON) domains.

Multivariate Spatiotemporal Clustering (MSTC)

Data Layers

Table: 37 characteristics averaged for the present (2000–2009) and the future (2090–2099).

Description	Number/Name	Units	Source
Monthly mean air temperature	12	°C	GCM
Monthly mean precipitation	12	mm	GCM
Day of freeze	mean	day of year	GCM
Day of freeze	standard deviation	days	
Day of thaw	mean	day of year	GCM
	standard deviation	days	
length of growing season	mean	days	GCM
Length of growing season	standard deviation	days	
Maximum active layer thickness	1	m	GIPL
Warming effect of snow	1	°C	GIPL
Mean annual ground temperature at bottom	1	°C	CIPI
of active layer	T	C	OII L
Mean annual ground surface temperature	1	°C	GIPL
Thermal offset	1	°C	GIPL
Limnicity	1	%	NHD
Elevation	1	m	SRTM

10 Alaska Ecoregions, Present and Future

Since the random colors are the same in both maps, a change in color represents an environmental change between the present and the future. At this level of division, the conditions in the large boreal forest become compressed onto the Brooks Range and the conditions on the Seward Peninsula "migrate" to the North Slope.

20 Alaska Ecoregions, Present and Future

Since the random colors are the same in both maps, a change in color represents an environmental change between the present and the future. At this level of division, the two primary regions of the Seward Peninsula and that of the northern boreal forest replace the two regions on the North Slope almost entirely.

- This representativeness analysis uses the standardized *n*-dimensional data space formed from all input data layers.
- In this data space, the Euclidean distance between a sampling location (like Barrow) and every other point is calculated.
- These data space distances are then used to generate grayscale maps showing the similarity, or lack thereof, of every location to the sampling location.
- In the subsequent maps, white areas are well represented by the sampling location or network, while dark and black areas as poorly represented by the sampling location or network.
- This analysis assumes that the climate surrogates maintain their predictive power and that no significant biological adaptation occurs in the future.

Present Representativeness of Barrow or "Barrow-ness"

⁽Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions are poorly represented by the sampling location listed in **red**.

Network Representativeness: Barrow + Council

⁽Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions are poorly represented by the sampling location listed in **red**.

Table: Site state space dissimilarities for the present (2000–2009).

Sites	Council	Atqasuk	lvotuk	Toolik Lake	Kougarok	Prudhoe Bay	Fairbanks
Barrow	9.13	4.53	5.90	5.87	7.98	3.57	12.16
Council		8.69	6.37	7.00	2.28	8.15	5.05
Atqasuk			5.18	5.23	7.79	1.74	10.66
lvotuk				1.81	5.83	4.48	7.90
Toolik Lake					6.47	4.65	8.70
Kougarok						7.25	5.57
Prudhoe Bay							10.38

Table: Site state space dissimilarities between the present (2000–2009) and the future (2090–2099).

			Future (2090–2099) Toolik Prudhoe									
	Sites	Barrow	Council	Atqasuk	lvotuk	Lake	Kougarok	Bay	Fairbanks			
6)	Barrow	3.31	9.67	4.63	6.05	5.75	9.02	3.69	11.67			
00	Council	8.38	1.65	8.10	5.91	6.87	3.10	7.45	5.38			
6	Atqasuk	6.01	9.33	2.42	5.46	5.26	8.97	2.63	10.13			
00	lvotuk	7.06	7.17	5.83	1.53	2.05	7.25	4.87	7.40			
2	Toolik Lake	7.19	7.67	6.07	2.48	1.25	7.70	5.23	8.16			
ent	Kougarok	7.29	3.05	6.92	5.57	6.31	2.51	6.54	5.75			
res	Prudhoe Bay	5.29	8.80	3.07	4.75	4.69	8.48	1.94	9.81			
С.	Fairbanks	12.02	5.49	10.36	7.83	8.74	6.24	10.10	1.96			

Can we design a strategy for objectively sampling diverse environmental gradients using models and measurements?

- Yes, MSTC provides a quantitative framework for stratifying sampling domains, informing site selection, and determining representativeness of measurements.
- Representativeness analysis provides a systematic approach for up-scaling point measurements to larger domains.

Landscope Food (2003) 28:1593-1396 DOI 10.10031a3990-003-9903-0	
RESEARCH ARTICLE	
Representativeness-based sampli for the State of Alaska	ng network design
Forrot M. Hoffman - Jitendra Kamar - Bichard T. Mills - William W. Hargrove	
Received: 13 Pelmany 2003/Accepted, 31 May 2003/Peldohed © The Authory) 2003. This article is published with open access	Lonline: 30 June 2013 and Springerlink.com
Address Theorem and regularis metantic factor theorem and the second second second second second transmission of the second sec	neuror (1962) 300% of farse (2013, 200%) ware dependent, davange provinsitations of 70 arcsi- teristic and davabased and how they any all the fa- tion of the second second second second second of a present and they far any second second second second second second second second second second transfer and seco
Landardy, Mill Rolp, Dr. (1997) e-mail: Everol Classicardollarg.org F. M. Hoffman, J. Kumar - B. T. Mith Environmental Sciences Division, Climate Change Science Institute (CCS), Oak Edge National Laboratory, Oak Edge, NY, USA	Network design - Cluster analysis - Alaska - Permafrost
P. T. Mile	Introduction
n. 1. Jonat on and mildh Cost gov W. W. Hagsone Easter Forst Environment Threat Assosment Center, USDA Forest Switz, Studies Ensemb Station, Aber416, NC, USA on and Intellighted Minter	The Actile contains york amounts of freeen water in the form of sea ize, snow, glaciers, and permutrent. Extended areas of permutron in the Accele contain soil organic carbon that is equivalent to twice the size of the atmospheric carbon pool, and this large sublided
	F) Series
	7 Sealer

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove (2013), Representativeness-Based Sampling Network Design for the State of Alaska, *Landscape Ecol.*, 28(8):1567–1586, doi:10.1007/s10980-013-9902-0.

Received US-IALE's 2014 Outstanding Paper in Landscape Ecology Award!

Problem: Model Uncertainty

Model uncertainty is one of the biggest challenges we face in Earth system science, yet comparatively little effort is devoted to fixing it (Carslaw et al., 2018)

- Model complexity is rapidly increasing as detailed process representations are added
- Evidence shows overall model uncertainty is reduced only slowly and sometimes increased (Knutti and Sedláček, 2013)
- Balance must be struck between model "elaboration" and efforts to reduce model uncertainty

Why is Addressing Uncertainty a Challenge?

- Ecosystems have complex responses to a wide range of forcing factors in heterogeneous spatial environments, requiring highly multivariate approach
- Model uncertainty may increase, even as predictions of states and fluxes improves
- Rigorous confrontation of models with independent observations and hundreds of simulations are required to reduce uncertainty
- Modeling centers have a limited capacity to conduct sensitivity experiments, especially in fully coupled Earth system models, and rely primarily on homegrown methods and tools
- Focus is on adding complexity (e.g., more detailed representations of plant traits, photosynthesis, nutrient limitation, respiration)

We are working on an ORNL LDRD-supported DRD Project to develop a Land Model Testbed (LMT) to advance our capabilities in running large ensembles and evaluating model performance with a suite of tools.

International Land Model Benchmarking (ILAMB) Workshop May 16–18, 2016, Washington, DC

The **International Land Model Benchmarking (ILAMB)** community coordination activity was designed to

- Develop internationally accepted benchmarks
- Promote the use of these benchmarks
- Strengthen linkages between experimental, remote sensing, and modeling communities
- Support the design and development of open source benchmarking tools (Luo et al., 2012), like the ILAMB Package (Collier et al., 2018)

Date DOE/SC-XXXX | doi:10.7249/XXXXXXXX

2016 International Land Model Benchmarking (ILAMB) Workshop Report

CMIP5 vs. CMIP6 Models

- The CMIP6 suite of land models (right) has improved over the CMIP5 suite of land models (left)
- The multi-model mean outperforms any single model for each suite of models
- The multi-model mean CMIP6 land model is the "best model" overall
- ▶ Why did CMIP6 land models improve?

	- V.	×	-	- Y.	. //	4.	4.	60	Ŷ	Ň	-	11	6.	W.	6.	0	. Q.	-W.
cosystem and Carbon Cycle			-								-						-	
Biomass			-					_	-									
Burned Area	-		-				_										-	
Carbon Dioxide			-			-		_		-	-				_	-		
Gross Primary Productivity			-				-		-	-	-			_		-		
Leaf Area Index				-	-		-		_				_					
Global Net Ecosystem Carbon Balance		_								_		-	_					
Net Ecosystem Exchange	-		_								_	_				-		
Ecosystem Respiration	-						_									_		
Soil Carbon			-	_			-		_								_	
Hydrology Cycle	_	_			_	_	-		-	_		_	_			-		
Evapotranspiration			_	L.,			_	_							_	_		
Evaporative Fraction									_									
Latent Heat																		
Runoff									_									
Sensible Heat			_			_		_		_								
Terrestrial Water Storage Anomaly																		
Permafrost			_						_							_		
Radiation and Energy Cycle							_											
Albedo																		
Surface Upward SW Radiation																		
Surface Net SW Radiation																		
Surface Upward LW Radiation																		
Surface Net LW Radiation																		
Surface Net Radiation																		
Forcings																		
Surface Air Temperature																		
Diurnal Max Temperature																		
Diurnal Min Temperature																		
Diurnal Temperature Range																		
Precipitation																		
Surface Relative Humidity																		
Surface Downward SW Radiation																		
Surface Downward LW Radiation																		
Relationships																		
BurnedArea/GFED4S																		
GrossPrimaryProductivity/GBAF										_								
LeafAreaIndex/AVHRR																		
LeafAreaIndex/MODIS																		
Evapotranspiration/GLEAM																		
Evapotranspiration/MODIS																		

Missing Data or Error (Hoffman et al., in prep.)

Reasons for Land Model Improvements

ESM improvements in climate forcings (temperature, precipitation, radiation) likely partially drove improvements exhibited by land carbon cycle models

Reasons for Land Model Improvements

Differences in bias scores for temperature, precipitation, and incoming radiation were primarily positive. further indicating more realistic climate representation

Argonne

RUBISCO

Reasons for Land Model Improvements

While forcings got better, the largest improvements were in **variable-to-variable relationships**, suggesting that increased land model complexity was also partially responsible for higher CMIP6 model scores

Improvements by Land Model

Recent and Ongoing Student Research

High Resolution Vegetation Maps for the BEO

We combined high resolution multi-spectral remote sensing and digital elevation models and vegetation community data to develop machine learning models and produce high resolution maps of vegetation community distributions. Capturing vegetation phenology from repeat imagery exploits variations in the timing of green up for different vegetation types, allowing improved accuracy in resulting data products.

High resolution vegetation maps captures vegetation community and distribution across polygon types

Langford, Z. L., J. Kumar, F. M. Hoffman, R. J. Norby, S. D. Wullschleger, V. L. Sloan, and C. M. Iversen (2016), Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets, *Remote Sens.*, 8(9):733, doi:10.3390/rs8090733.

Terrestrial Feedbacks in a Geoengineered Climate

Reduced ecosystem respiration and small increases in vegetation productivity under geoengineering resulted in an additional 79 Pg C sink by the end of the 21st century in comparison with RCP 8.5

• Increase in atmospheric CO₂ should have been reduced by 4% at 2097 due to the terrestrial carbon feedback (Δ [CO₂]_{atm} = 37 ppm), but marine feedbacks will also influence these results

Yang, Cheng-En, Forrest M. Hoffman, Simone Tilmes, Douglas G. MacMartin, Lili Xia, Jadwiga H. Richter, Ben Kravitz, Michael J. Mills, and Joshua S. Fu (2019), Assessing Terrestrial Biogeochemical Feedbacks in a Strategically Geoengineered Climate, submitted to *Environ. Res. Lett.*

Continental-scale Monitoring of Croplands using Remote Sensing Data and Machine Learning Methods

- Continuous mapping (and monitoring) of crops in near real time – what is growing?
- Estimate fractional crop cover in every pixel and predict crop acreage – where is it growing?
- Impact of mean and extreme weather on crop yield – what is the expected yield given growing conditions?

(Konduri et al., submitted)

Earliest Date for Crop Type Classification

Konduri, Venkata Shashank, Jitendra Kumar, William W. Hargrove, Forrest M. Hoffman, and Auroop R. Ganguly (2020), Mapping Crops Within the Growing Season Across the United States, submitted to *Remote Sens. Environ.*

Carbon Cycle Extremes in Multi-Century Simulations

Global GPP Extreme Events (1850-2100, 2101-2300)

(Sharma et al., in prep.)

Changing Spatial Distribution of Negative Extremes

Sharma, Bharat D., Forrest M. Hoffman, Jitendra Kumar, Nathan Collier, and Auroop R. Ganguly (2020), Quantifying the Changes in Carbon Cycle Extremes with Land Use Change and Attribution to Climate Drivers through Year 2300, in preparation.

This research was sponsored by the Climate and Environmental Sciences Division (CESD) of the Biological and Environmental Research (BER) Program in the U. S. Department of Energy Office of Science and the USDA Forest Service. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-000R22725.

I wish to acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and thank the climate modeling groups for producing and making available their model output. For CMIP the U. S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

References

- R. J. Andres, J. S. Gregg, L. Losey, G. Marland, and T. A. Boden. Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus B, 63(3): 309–327, July 2011. doi:10.1111/j.1600-0889.2011.00530.x.
- R. J. Andres, T. A. Boden, F.-M. Bréon, P. Ciais, S. Davis, D. Erickson, J. S. Gregg, A. Jacobson, G. Marland, J. Miller, T. Oda, J. G. J. Olivier, M. R. Raupach, P. Rayner, and K. Treanton. A synthesis of carbon dioxide emissions from fossil-fuel combustion. *Biogeosci.*, 9(5):1845–1871, May 2012. doi:10.5194/bg-9-1845-2012.
- K. S. Carslaw, L. A. Lee, L. A. Regayre, and J. S. Johnson. Climate models are uncertain, but we can do something about it. Eos Trans. AGU, 99, Feb. 2018. doi:10.1029/2018EO093757.
- N. Collier, F. M. Hoffman, D. M. Lawrence, G. Keppel-Aleks, C. D. Koven, W. J. Riley, M. Mu, and J. T. Randerson. The International Land Model Benchmarking (ILAMB) system: Design, theory, and implementation. J. Adv. Model. Earth Syst., 10(11):2731–2754, Nov. 2018. doi:10.1029/2018MS001354.
- P. M. Cox, D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. *Nature*, 494(7437):341–344, Feb. 2013. doi:10.1038/nature11882.
- A. Hall and X. Qu. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33(3):L03502, Feb. 2006. doi:10.1029/2005GL025127.
- F. M. Hoffman, J. Kumar, R. T. Mills, and W. W. Hargrove. Representativeness-based sampling network design for the State of Alaska. Landscape Ecol., 28(8): 1567–1586, Oct. 2013. doi:10.1007/s10980-013-9902-0.
- F. M. Hoffman, J. T. Randerson, V. K. Arora, Q. Bao, P. Cadule, D. Ji, C. D. Jones, M. Kawamiya, S. Khatiwala, K. Lindsay, A. Obata, E. Shevliakova, K. D. Six, J. F. Tjiputra, E. M. Volodin, and T. Wu. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models. J. Geophys. Res. Biogeosci, 119(2):141–162, Feb. 2014. doi:10.1002/2013JG002381.
- S. Khatiwala, T. Tanhua, S. Mikaloff Fletcher, M. Gerber, S. C. Doney, H. D. Graven, N. Gruber, G. A. McKinley, A. Murata, A. F. Ríos, and C. L. Sabine. Global ocean storage of anthropogenic carbon. *Biogeosci.*, 10(4):2169–2191, Apr. 2013. doi:10.5194/bg-10-2169-2013.
- R. Knutti and J. Sedláček. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Clim. Change, 3(4):369–373, Apr. 2013. doi:10.1038/nclimate1716.
- Y. Q. Luo, J. T. Randerson, G. Abramowitz, C. Bacour, E. Blyth, N. Carvalhais, P. Ciais, D. Dalmonech, J. B. Fisher, R. Fisher, P. Friedlingstein, K. Hibbard, F. Hoffman, D. Huntzinger, C. D. Jones, C. Koven, D. Lawrence, D. J. Li, M. Mahecha, S. L. Niu, R. Norby, S. L. Piao, X. Qi, P. Peylin, I. C. Prentice, W. Riley, M. Reichstein, C. Schwalm, Y. P. Wang, J. Y. Xia, S. Zaehle, and X. H. Zhou. A framework for benchmarking land models. *Biogeosci.*, 9(10): 3857–3874, Oct. 2012. doi:10.5194/bg-9.3857-2012.
- M. Meinshausen, S. Smith, K. Calvin, J. Daniel, M. Kainuma, J.-F. Lamarque, K. Matsumoto, S. Montzka, S. Raper, K. Riahi, A. Thomson, G. Velders, and D. P. van Vuuren. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. *Clim. Change*, 109(1):213–241, Nov. 2011. doi:10.1007/s10584-011-0156-z.
- C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T. Ono, and A. F. Rios. The oceanic sink for anthropogenic CO₂. Science, 305(5682):367–371, July 2004. doi:10.1126/science.1097403.