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Biogeochemistry–Climate Feedbacks SFA Goals

I Terrestrial and ocean biogeochemical processes are poorly represented
in current Earth system models (ESMs).

I Large uncertainties in the strengths of BGC–climate feedbacks
motivates addition of new BGC mechanisms in ESMs.

I To advance understanding, comprehensive and multi-faceted
evaluation, analysis, and diagnosis of ESM results are needed.

I We are performing systematic evaluation of ESMs, delivering diagnosis
tools for informing model development, and engaging experimentalists
in identifying model weaknesses and needed measurements.

BGC Feedbacks SFA Goals

The overarching goals of the BGC Feedbacks SFA are to identify and
quantify the feedbacks between biogeochemical cycles and the climate
system, and to quantify and reduce the uncertainties in ESMs associated
with those feedbacks.



Biogeochemistry–Climate Feedbacks SFA Objectives

We will achieve these goals through five objectives:

1. development of new hypothesis-driven approaches for evaluation of
ESM biogeochemical process representation responses at site, regional
and global scales;

2. investigation of the degree to which contemporary observations can be
used to reduce uncertainties in future scenarios, using an “emergent
constraint” approach;

3. development of an open source benchmarking software system that
leverages the growing collection of laboratory, field, and remote sensing
data sets for systematic evaluation of ESM biogeochemical processes;

4. evaluation of the performance of biogeochemical processes and
feedbacks in different ESMs using the benchmarking software system;
and

5. providing international leadership for biogeochemistry model evaluation
and benchmarking.



Biogeochemistry–Climate Feedbacks SFA Diagram



Biogeochemistry–Climate Feedbacks SFA Accomplishments
Accomplishments for 2015

I Published 38 peer-reviewed papers since January 1, 2014.

I Randerson et al. Global Biogeochemical Cycles paper
highlighted in Nature News and Views on June 18, 2015.

I J. Keith Moore received the 2015 CESM Distinguished
Achievement Award on June 15, 2015 in Breckenridge.

I 2 of top 10 most-cited papers in Biogeosciences for 2014
(#1 by Todd-Brown et al. and #6 by Melton et al.).

I Negrón-Juárez paper was one of 10 highlighted for June
2015 by Environmental Research Letters.

I Demonstrated an ILAMB prototype package at DOE
Germantown on September 8, 2014.

I Jinyun Tang won an Outstanding Publication Award
from the Ecological Society of America in August 2014.

I Koven, Hoffman, and Randerson participating in C4MIP
Committee for CMIP6.

I Lawrence participating in LUMIP Committee for CMIP6.

I Most DOE Lab participants are also contributing to
ACME model development, verification, or simulations.

I Riley, Lawrence, and Randerson are CESM Working
Group Co-chairs.

Hoffman et al. (2014)

Bouskill et al. (2014)

Lindsay et al. (2014)

Randerson et al.
(2015)

Keppel-Aleks et al.
(2014)

Koven et al. (2015)



Biogeochemistry–Climate Feedbacks SFA Highlights (1)Emergent Constraint Developed from CMIP5 ESMs
An emergent constraint based on
carbon inventories was applied to
constrain future atmospheric
CO2 projections from CMIP5
ESMs.

Future  vs. Contemporary Atmospheric CO2 Mole Fraction
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R2 = 0.70

Contemporary (2010) CO2 Mole Fraction (ppm)
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I Much of the
model-to-model variation
in projected CO2 during
the 21st century is tied to
biases that existed during
the observational era.

I Model differences in the
representation of
concetration–carbon
feedbacks and other
slowly changing carbon
cycle processes appear to
be the primary driver of
this variability.

I Range of temperature
increases at 2100 slightly
reduced, from 5.1 ± 2.2◦C
for the full ensemble, to
5.0 ± 1.9◦C after applying
the emergent constraint.

Probability Density of Atmospheric CO2 Mole Fraction
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b) 2100

Best estimate using Mauna Loa CO2

At 2060: 600 ± 14 ppm, 21 ppm
below the multi-model mean

At 2100: 947 ± 35 ppm, 32 ppm
below the multi-model mean

Hoffman, Forrest M., James T. Randerson, Vivek K. Arora, Qing Bao, Patricia Cadule, Duoying Ji, Chris D. Jones, Michio Kawamiya,
Samar Khatiwala, Keith Lindsay, Atsushi Obata, Elena Shevliakova, Katharina D. Six, Jerry F. Tjiputra, Evgeny M. Volodin, and
Tongwen Wu. February 2014. “Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models.”
J. Geophys. Res. Biogeosci., 119(2):141–162. doi:10.1002/2013JG002381. Most downloaded JGR-B paper for February 2014!



Biogeochemistry–Climate Feedbacks SFA Highlights (2)

Department of Energy  •  Office of Science  •  Biological and Environmental Research 1  BER Climate Research 

Observations in Tundra Imply Needed Improvements in 

Land Models 

Objective 

Research 
Impacts 

Reference: Bouskill NJ, Riley WJ, Tang J (2014) Meta-analysis of high-latitude nitrogen-addition and 

warming studies implies ecological mechanisms overlooked by land models. Biogeosciences. 11:1-15. 

   We describe an observational and modeling 
meta-analysis to benchmark land models and 
identify needed improvement. We applied the 
method to CLM with two versions of 
belowground biogeochemistry (CN and 
Century). 

• We extracted benchmark metrics (e.g., 
belowground respiration, soil organic matter 
content) from 53 manipulation experiments 
studies across 17 high-latitude ecosystems.  

• We calculated a response ratio of a metric 
relative to the control. 

• We performed complimentary CLM4.5 
simulation and analyzed discrepancies. 

   

• We identified poor representation of 
microbial activity, above- and belowground 
coupling, and nutrient cycling as the 
primary reasons for the discrepancies. 

• Identifying deficiencies in the model 
structure can motivate future experiments 
and focus model development efforts. 

Carbon cycle 
responses to 
warming in 
observations 
(blue) and two 
versions of CLM. 
CLM performed 
poorly against 
many of these 
observations. 



Biogeochemistry–Climate Feedbacks SFA Highlights (3)

Department of Energy  •  Office of Science  •  Biological and Environmental Research 1  BER Climate Research 

Understanding the Controls on the Magnitude of the 

Permafrost Carbon–Climate Feedback 

Objective: 

Quantify the carbon cycle dynamics of 

the permafrost region under a 

warming climate, and understand the 

roles of deep C lability and carbon–

nitrogen interactions in determining 

the magnitude of the permafrost 

carbon–climate feedback. 

Research: 

Use CLM4.5-BGC, which allows for 

interactions between thawing permafrost, 

mineralization of C and N from decomposing 

permafrost soil and vegetation feedbacks, 

under a transient, offline, RCP 8.5 warming 

experiment to 2300. Identify N controls by 

comparing C–N and C-only versions of the 

model; and quantify role of deep C dynamics 

by varying a parameter that controls role of 

depth on decomposition. 

Impact: 

Permafrost soils are a potentially large 

component of the terrestrial carbon cycle 

response to warming, which are only recently 

available for understanding their dynamics in 

ESMs. Including these processes allows 

CLM4.5-BGC to predict the magnitude of the 

permafrost carbon–climate feedback, which is 

a potentially large fraction of global feedbacks 

on long timescales. 

Reference: Koven, C. D., D. M. Lawrence, and W. J. Riley (2014), Permafrost carbon−climate feedback is sensitive to deep soil carbon 

decomposability but not deep soil nitrogen dynamics, Proc. Nat. Acad. Sci., 112(12):3752–3757, doi:10.1073/pnas.1415123112. 



Biogeochemistry–Climate Feedbacks SFA Highlights (4)Quantifying Drivers of CO2 Interannual Variability

Objective:
Quantify the contributions of known drivers of
interannual variability in the growth rate of
atmospheric carbon dioxide (CO2).

Approach:
We examined how the temporal evolution of
CO2 in different latitude bands may be used to
separate contributions from temperature
stress, drought stress, and fire emissions to
CO2 variability.

Results/Impacts:

Relative contributions to the simulated variability in atmospheric
CO2 in different latitude bands (x axis) from net ecosystem
exchange responses to temperature, drought stress, and fire
emissions originating from the tropics and Northern Hemisphere.

I Net ecosystem exchange (NEE) responses to temperature, drought, and fire emissions all
contributed significantly to CO2 variability; no single mechanism was dominant.

I Combined, drought and fire contributions to CO2 variability exceeded direct NEE responses
to temperature in both the Northern and Southern Hemispheres.

I Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25%
to 2.9 ± 0.4 Pg C yr−1 K−1.

I Results will inform the improvement of the representation of terrestrial ecosystem processes
in Earth system models.

Keppel-Aleks, Gretchen, Aaron S. Wolf, Mingquan Mu, Scott C. Doney, Douglas C. Morton, Prasad S. Kasibhatla, John B.
Miller, Edward J. Dlugokencky, and James T. Randerson (2014), Separating the Influence of Temperature, Drought, and Fire on
Interannual Variability in Atmospheric CO2. Global Biogeochem. Cycles, 28(11):1295–1310. doi:10.1002/2014GB004890.



Biogeochemistry–Climate Feedbacks SFA Highlights (5)

Department of Energy  •  Office of Science  •  Biological and Environmental Research 1  BER Climate Research 

Do Climate–Carbon Feedbacks Intensify over Time?  

Objective: 

Understand how land and ocean contributions to 

climate–carbon feedbacks evolve over time from 

1850 to 2300. 

Research: 

• Use CESM1(BGC) to assess carbon cycle dynamics 

for the Representative Concentration Pathway 8.5 

and its extension. 

• Three simulations with different levels of radiative 

coupling allowed us to diagnose parameters 

describing the gain of the climate–carbon feedback. 

Reference: Randerson, J. T., K. Lindsay, E. Munoz, W. Fu, J. K. Moore, F. M. Hoffman, N. M. Mahowald, and S. C. Doney (2015), 

Multicentury Changes in Ocean and Land Contributions to Climate–Carbon Feedbacks, Global Biogeochem. Cycles, 29(6):744–759, 

doi:10.1002/2014GB005079. 

Impact: 

• We found that the gain of the climate–carbon 

feedback increased almost 3-fold from 2100 to 2300.  

• Ocean carbon sensitivity to climate change was 

proportional to increases in heat content. 

• Climate influence on carbon largest in the Atlantic 

Ocean and in Central and South American forests. 



What is a Benchmark?

I A Benchmark is a quantitative test of
model function achieved through
comparison of model results with
observational data.

I Acceptable performance on benchmarks
is a necessary but not sufficient
condition for a fully functioning model.

I Functional benchmarks offer tests of
model responses to forcings and yield
insights into ecosystem processes.

I Effective benchmarks must draw upon a
broad set of independent observations
to evaluate model performance on
multiple temporal and spatial scales.

Models often fail to capture the amplitude of the seasonal
cycle of atmospheric CO2.

Models may reproduce correct responses over only a
limited range of forcing variables.

(Randerson et al., 2009)



Why Benchmark?

I to demonstrate to the science community and public that the representation
of coupled climate and biogeochemical cycles in Earth system models (ESMs)
is improving;

I to quantitatively diagnose impacts of model development in related fields on
carbon cycle processes;

I to guide synthesis efforts, such as the Intergovernmental Panel on Climate
Change (IPCC), in the review of mechanisms of global change in models that
are broadly consistent with available contemporary observations;

I to increase scrutiny of key datasets used for model evaluation;

I to identify gaps in existing observations needed for model validation;

I to accelerate incorporation of new measurements for rapid and widespread
use in model assessment;

I to provide a quantitative, application-specific set of minimum criteria for
participation in model intercomparison projects (MIPs).



An Open Source Benchmarking Software System

CMIP6:

C4MIP

LUMIP
. . .

GCP TRENDY CMIP5

MsTMIP

NACP Interim

LBA−DMIP

C−LAMP

PLUME−MIP

Future MIPs:

. . .

I Human capital costs of making rigorous model-data comparisons is
considerable and constrains the scope of individual MIPs.

I Many MIPs spend resources “reinventing the wheel” in terms of variable
naming conventions, model simulation protocols, and analysis software.

I Need for ILAMB: Each new MIP has access to the model-data comparison
modules from past MIPs through ILAMB (e.g., MIPs use one common
modular software system). Standardized international naming conventions
also increase MIP efficiency.



I We co-organized inaugural meeting and ∼45 researchers participated from the United
States, Canada, the United Kingdom, the Netherlands, France, Germany, Switzerland,
China, Japan, and Australia.

I ILAMB Goals: Develop internationally accepted benchmarks for model performance,
advocate for design of open-source software system, and strengthen linkages between
experimental, monitoring, remote sensing, and climate modeling communities. Initial focus
on CMIP5 models.

I Provides methodology for model–data comparison and baseline standard for performance of
land model process representations (Luo et al., 2012).



General Benchmarking Procedure

(Luo et al., 2012)



Example Benchmark Score Sheet from C-LAMP

Models

B
G

C
 D

atasets

Uncertainty Scaling Total
Metric Metric components of obs. mismatch score Sub-score CASA′ CN

LAI Matching MODIS observations 15.0 13.5 12.0
• Phase (assessed using the month of maximum LAI) Low Low 6.0 5.1 4.2
• Maximum (derived separately for major biome classes) Moderate Low 5.0 4.6 4.3
• Mean (derived separately for major biome classes) Moderate Low 4.0 3.8 3.5

NPP Comparisons with field observations and satellite products 10.0 8.0 8.2
• Matching EMDI Net Primary Production observations High High 2.0 1.5 1.6
• EMDI comparison, normalized by precipitation Moderate Moderate 4.0 3.0 3.4
• Correlation with MODIS (r2) High Low 2.0 1.6 1.4
• Latitudinal profile comparison with MODIS (r2) High Low 2.0 1.9 1.8

CO2 annual cycle Matching phase and amplitude at Globalview flash sites 15.0 10.4 7.7
• 60◦–90◦N Low Low 6.0 4.1 2.8
• 30◦–60◦N Low Low 6.0 4.2 3.2
• 0◦–30◦N Moderate Low 3.0 2.1 1.7

Energy & CO2 fluxes Matching eddy covariance monthly mean observations 30.0 17.2 16.6
• Net ecosystem exchange Low High 6.0 2.5 2.1
• Gross primary production Moderate Moderate 6.0 3.4 3.5
• Latent heat Low Moderate 9.0 6.4 6.4
• Sensible heat Low Moderate 9.0 4.9 4.6

Transient dynamics Evaluating model processes that regulate carbon exchange 30.0 16.8 13.8
on decadal to century timescales
• Aboveground live biomass within the Amazon Basin Moderate Moderate 10.0 5.3 5.0
• Sensitivity of NPP to elevated levels of CO2: comparison Low Moderate 10.0 7.9 4.1

to temperate forest FACE sites
• Interannual variability of global carbon fluxes: High Low 5.0 3.6 3.0

comparison with TRANSCOM
• Regional and global fire emissions: comparison to High Low 5.0 0.0 1.7

GFEDv2
Total: 100.0 65.9 58.3

(Randerson et al., 2009)



ILAMB Prototype Diagnostics System
An initial ILAMB prototype has been developed by Mingquan Mu at UCI.

I Current variables:
Aboveground live biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED3),

CO2 (NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, MTE), Leaf area

index (AVHRR, MODIS), Global net land flux (GCP, Khatiwala/Hoffman), Net ecosystem

exchange (Fluxnet, GBA), Ecosystem Respiration (Fluxnet, GBA), Soil C (HWSD,

NCSCDv2), Evapotranspiration (GLEAM, MODIS), Latent heat (Fluxnet, MTE), Soil

moisture (ESA), Terrestrial water storage anomaly (GRACE), Albedo (CERES, GEWEX,

MODIS), Surface up SW/LW radiation (CERES, GEWEX.SRB, WRMC.BSRN), Sensible

heat (Fluxnet, GBA), Surface air temperature (CRU, Fluxnet), Precipitation (Fluxnet,

GPCC, GPCP2), Surface down SW/LW radiation (Fluxnet, CERES, GEWEX.SRB,

WRMC.BSRN),

I Graphics and scoring systems:
• Annual mean, Bias, RMSE, seasonal cycle, spatial distribution, interannual coeff. of
variation and variability, long-term trend scores

• Global maps, variable to variable, and time series comparisons

I Software:
Freely distributed, designed to be user friendly and to enable easy addition of new variables

(Mu, Hoffman, Riley, Koven, Lawrence, Randerson)



ILAMB Prototype Layout: Global Variables



ILAMB Prototype Layout: Variable to Variable



ILAMB Prototype Metrics Documentation



Biogeochemistry–Climate Feedbacks SFA 10 Year Vision

Near-Term Goals

I Our international collaboration has made significant progress on
development of metrics in the ILAMB prototype.

I Our BGC-Feedbacks Project is developing new model–data analysis
studies for terrestrial and now marine biogeochemistry (see
http://www.bgc-feedbacks.org/).

I We have proposed an ILAMB Town Hall at the upcoming American
Geophysical Union (AGU) Fall Meeting in December.

I We are planning another community-wide meeting on model metrics
and diagnostics in Washington, DC, USA in spring 2016.



Biogeochemistry–Climate Feedbacks SFA 10 Year Vision

5 Year Goals

I Fully fund and integrate marine and sea ice BGC benchmarking.

I Extend community engagement through Town Halls, community
workshops, model–data intercomparison projects, and tutorials.

I Build new forcing and evaluation datasets, including from NGEE
Arctic/Tropics, SPRUCE, Fluxnet, and satellites.

I Evaluate CMIP6, lead land and ocean BGC MIPs for CMIP7.

10 Year Goals

I Build a benchmarking system that evaluates all ESM processes.

I Build a multi-agency-sponsored ESM Assessment Center, support
synthesis working groups.

I Integrate models and data to develop state-of-the-carbon-cycle data,
incorporate a flexible data assimilation system.

I Perform and evaluate CMIP7 experiments.



Biogeochemistry–Climate Feedbacks SFA 10 Year Vision

Phase 1 (2014–2017) Phase 2 (2017–2020) Phase 3 (2020–2024)

ILAMB and Benchmark Tools ILAMB prototype and second
generation system, integrate C
cycle metrics into ESGF

Ocean benchmark integration,
full integration into ESGF

Server-side benchmarking and
offline transport / runoff
model integration

Community Engagement and
Leadership

AGU Town Hall, ILAMB
community workshops, ILAMB
tutorial

AGU and AGU Ocean Town
Halls, land / ocean community
workshops, benchmarking
tutorials

Build multi-agency ESM
Center, land and ocean
community workshops,
synthesis working groups

Metrics Development Develop and test emergent
constraint approach, land /
ocean C cycles, OMZs, atm C
distribution

DOC in sea ice, ocean
organics and aerosols, land
VOCs and SOAs, soil types,
plant traits, atm chemistry

Coastal / estuarine processes,
riverine nutrients,
bi-directional canopy fluxes

Forcing Data Development Evaluation land model
sensitivity to forcing, test
alternative forcing data

Contribute to development of
new forcing data for land and
ocean models

Develop state of the carbon
cycle data / initial conditions
through assimilation

Evaluation Data
Development

Global carbon, water, energy
data, high lat soil C,
AmeriFlux, FACE / N addition
/ warming experiments

NGEE Arctic / Tropics and
SPRUCE data, Fluxnet,
LiDAR / hyperspectral,
OCO-2, add uncertainty data

Synthesis / analytics for
combining data, new in situ
data from drivers / drones

MIP Experiment
Development and Analysis

C4MIP and LUMIP for
CMIP6, TRENDY for Global
Carbon Project, PLUME-MIP

Evaluate CMIP6, lead land /
ocean / atm biogeochemistry
MIPs for CMIP7, other MIPs

Perform CMIP7 experiments,
evaluate CMIP7
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