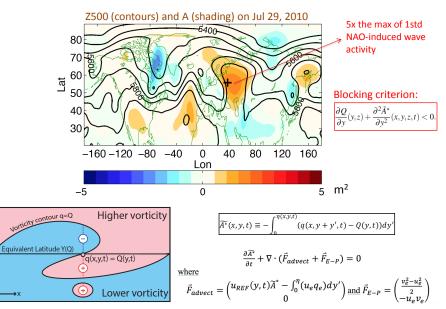
Example Metrics and Diagnostics


Forrest M. Hoffman

Oak Ridge National Laboratory

Regional & Global Climate Modeling (RGCM) Team Leads Meeting Hyatt Regency, Bethesda, Maryland, USA October 7, 2015

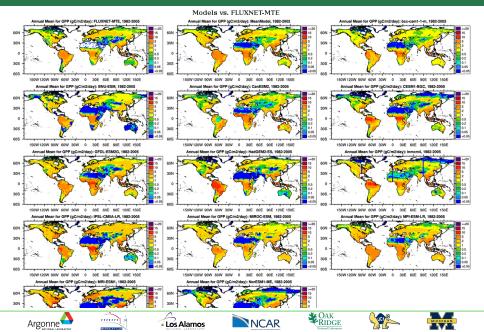
Example Atmospheric Blocking Diagnostic

Finite-amplitude wave activity for circulation extremes

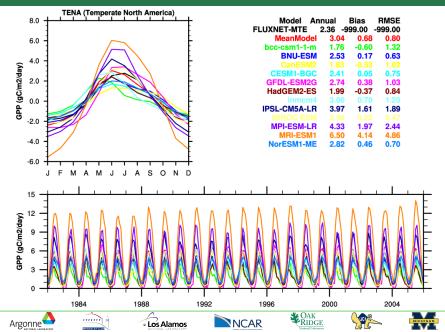
Metric Scoring for ILAMB Prototype

Global Variables (Info for Weightings)

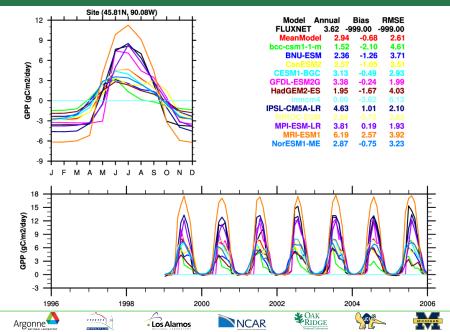
	MeanModel	bcc-csm1-1-m	BNU-ESM	CanESM2	CESM1-BGC	GFDL-ESM2G	HadGEM2-ES	inmem4	IPSL-CM5A-LR	MIROC-ESM	MPI-ESM-LR	MRI-ESM1	NorESM1-ME
Aboveground Live Biomass	0.71	0.55	0.43	0.65	0.60	0.58	0.67	0.65	0.70	0.57	0.51	0.66	0.60
Burned Area	0.38		-	-	0.37	-	-	-	-		0.38		0.37
Carbon Diexide	0.80		0.71	0.69	0.75	0.69						0.69	
<u>Gross Primary</u> <u>Productivity</u>	0.77	0.73	0.73	0.64	0.71	0.67	0.69	0.70	0.66	0.69	0.69	0.52	0.70
Leaf Area Index	0.67	0.67	0.40	0.60	0.55	0.50	0.60	0.68	0.66	0.62	0.68	0.41	0.50
<u>Gløbal Net</u> Ecesystem Carbon Balance	0.52		0.18	0.25	0.36	0.20	0.30	0.22	0.28	0.35	0.38	0.16	0.33
Net Ecosystem Exchange	0.49	0.48	0.45	0.39	0.48	0.48	0.47	0.44	0.53	0.47	0.50	0.48	0.48
Ecosystem Respiration	0.74	0.72	0.73	0.65	0.67	0.71	0.66	0.67	0.66	0.69	0.69	0.45	0.67
Seil Carben	0.55	0.50	0.43	0.56	0.38	0.51	0.51	0.53	0.57	0.53	0.41	0.52	0.39
Summary	0.63	0.60	0.51	0.55	0.54	0.54	0.55	0.54	0.57	0.55	0.52	0.49	0.50
Evapotranspiration	0.75	0.73	0.72	0.72	0.73	0.70	0.74	0.69	0.75	0.71	0.72	0.74	0.71
Latent Heat	0.80	0.76	0.75	0.77	0.78	0.75	0.77	0.73	0.77	0.75	0.76	0.79	0.76
Terrestrial Water Storage Anomaly	0.53	0.46	0.37	0.54	0.48	0.43	0.44	0.52	0.45	0.52	0.56	0.47	0.45
Summary	0.69	0.65	0.61	0.67	0.66	0.63	0.65	0.64	0.65	0.66	0.68	0.67	0.64
Albedo	0.72	0.71	0.62	0.71	0.73	0.69	0.74	0.68	0.70	0.67	0.73	0.64	0.72
Surface Upward SW Radiation	0.77	0.73	0.66	0.74	0.76	0.74	0.76	0.73	0.73	0.71	0.75	0.66	0.75
Surface Net SW Radiation	0.84	0.85	0.84	0.84	0.86	0.86	0.85	0.84	0.82	0.83	0.87	0.85	0.86
Surface Upward LW Radiation	0.90	0.91	0.92	0.91	0.92	0.91	0.92	0.89	0.91	0.90	0.92	0.91	0.91
Surface Net IW Radiation	0.82	0.82	0.82	0.80	0.81	0.82	0.82	0.80	0.78	0.78	0.81	0.82	0.80
Surface Net Radiation	0.79	0.79	0.77	0.79	0.80	0.80	0.80	0.75	0.78	0.76	0.81	0.78	0.80
Sensible Heat	0.76	0.70	0.70	0.71	0.74	0.70	0.75	0.66	0.70	0.69	0.69	0.72	0.72
Summary	0.79	0.78	0.76	0.78	0.80	0.78	0.80	0.75	0.77	0.76	0.79	0.76	0.79
<u>Surface Air</u> <u>Temperature</u>	0.87	0.85	0.87	0.85	0.88	0.86	0.87	0.86	0.86	0.86	0.87	0.88	0.86
Precipitation	0.69	0.67	0.66	0.67	0.71	0.68	0.72	0.68	0.67	0.68	0.70	0.70	0.69
Surface Downward SW Radiation	0.86	0.87	0.88	0.87	0.88	0.88	0.87	0.86	0.83	0.86	0.88	0.87	0.88
Surface Downward IW Radiation	0.90	0.92	0.91	0.91	0.91	0.92	0.93	0.91	0.89	0.91	0.92	0.91	0.91
Summary	0.79	0.77	0.77	0.77	0.80	0.78	0.80	0.78	0.76	0.78	0.79	0.79	0.79
Overall	0.68	0.54	0.57	0.60	0.63	0.59	0.57	0.55	0.57	0.56	0.58	0.57	0.57

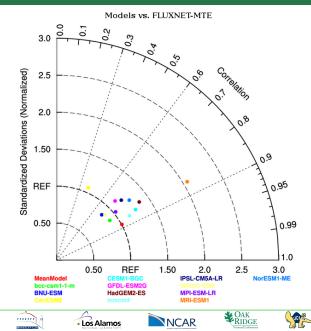


Gross Primary Production in ILAMB Prototype


Diagnostic Summary for Gross Primary Productivity: Model vs. FLUXNET-MTE

		Global	Patterns		Regional Patterns			Scoring (<u>Info</u>)	
	Annual Mean (PgC/yr)	<u>Bias</u> (PgC/yr)	<u>RMSE</u> (PgC/mon)	Phase Difference (months)	<u>Regional</u> Mean	<u>Global Bias</u>	RMSE	<u>Seasonal</u> <u>Cycle</u>	<u>Spatial</u> Distribution	<u>Overall</u>
Benchmark [Jung et al. (2009)]	<u>118.4</u>	-	-	<u>0.0</u>	access to plots	-	-	-	-	-
MeanModel	<u>146.7</u>	28.3	<u>4.7</u>	<u>0.6</u>	access to plots	<u>0.77</u>	<u>0.73</u>	<u>0.79</u>	<u>0.94</u>	<u>0.79</u>
bcc-csm1-1-m	112.6	<u>-5.8</u>	<u>6.0</u>	<u>-0.2</u>	access to plots	<u>0.71</u>	<u>0.64</u>	<u>0.80</u>	<u>0.89</u>	<u>0.74</u>
BNU-ESM	105.6	<u>-12.8</u>	<u>6.2</u>	<u>-0.1</u>	access to plots	<u>0.69</u>	0.66	<u>0.79</u>	<u>0.83</u>	<u>0.73</u>
CanESM2	129.7	11.3	<u>7.3</u>	<u>0.8</u>	access to plots	<u>0.64</u>	<u>0.60</u>	<u>0.67</u>	<u>0.70</u>	<u>0.64</u>
CESM1-BGC	129.0	<u>10.6</u>	<u>5.7</u>	<u>0.5</u>	access to plots	<u>0.69</u>	<u>0.65</u>	<u>0.76</u>	<u>0.87</u>	<u>0.72</u>
GFDL-ESM2G	<u>168.6</u>	<u>50.2</u>	<u>9.3</u>	<u>0.6</u>	access to plots	<u>0.67</u>	<u>0.56</u>	<u>0.73</u>	0.84	<u>0.67</u>
HadGEM2-ES	<u>138.1</u>	<u>19.7</u>	<u>7.0</u>	<u>0.4</u>	access to plots	<u>0.67</u>	<u>0.60</u>	<u>0.78</u>	<u>0.83</u>	<u>0.70</u>
inmcm4	<u>136.9</u>	<u>18.5</u>	<u>5.7</u>	<u>0.3</u>	access to plots	<u>0.74</u>	<u>0.67</u>	<u>0.76</u>	<u>0.91</u>	<u>0.75</u>
IPSL-CM5A-LR	<u>168.1</u>	<u>49.7</u>	<u>9.0</u>	<u>0.4</u>	access to plots	<u>0.63</u>	0.56	<u>0.77</u>	<u>0.84</u>	<u>0.67</u>
MIROC-ESM	<u>129.2</u>	<u>10.8</u>	<u>6.1</u>	<u>0.3</u>	access to plots	0.72	<u>0.66</u>	<u>0.75</u>	<u>0.85</u>	<u>0.73</u>
MPI-ESM-LR	<u>169.7</u>	<u>51.3</u>	<u>7.5</u>	<u>0.4</u>	access to plots	<u>0.67</u>	<u>0.62</u>	<u>0.70</u>	<u>0.89</u>	<u>0.70</u>
Argonne	· · · · · · · · · · · · · · · · · · ·		• Los A	lamos		AR ⁱ	OAK RIDGE		<u>ب</u>	


Annual Mean Gross Primary Production


Regional Gross Primary Production

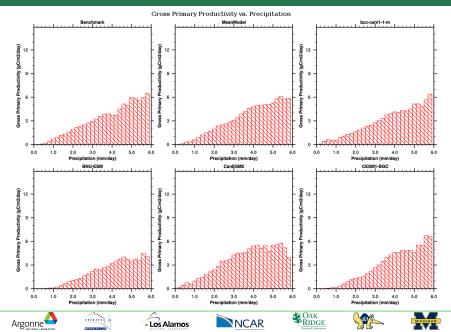
Site Gross Primary Production

Spatial Correspondence of Gross Primary Production

Argonne

	Relationship	Benchmark	MeanModel	bcc-csm1-1-m	BNU-ESM	CanESM2	CESM1-BGC	GFDL-ESM2G	HadGEM2-ES	inmcm4	IPSL-CM5A-LR	MIROC-ESM	MPI-ESM-LR	MRI-ESM1	NorESM1-ME
Evapetranspiration ys. Gross Primary Productivity	function_bar	1	<u>0.82</u>	<u>0.79</u>	0.62	<u>0.85</u>	<u>0.73</u>	0.89	0.83	<u>0.76</u>	0.86	<u>0.74</u>	0.88	0.60	<u>0.69</u>
Precipitation vs. Burned Area	function_bar	1	<u>9.44</u>	•	· ·	•	0.46	1.1	· · ·	•			0.43		0.45
Precipitation vs. Evapetranspiration	function_bar	1	<u>0.71</u>	<u>0.81</u>	<u>0.78</u>	<u>0.80</u>	0.69	0.75	0.68	0.69	0.75	<u>0.74</u>	<u>0.74</u>	<u>0.78</u>	0.67
<u>Precipitation vs.</u> <u>Gross Primary</u> <u>Productivity</u>	function_bar	1	<u>0.89</u>	0.90	<u>0.73</u>	<u>0.77</u>	<u>0.86</u>	<u>0.78</u>	<u>0.74</u>	<u>0.88</u>	<u>0.70</u>	<u>0.83</u>	0.69	<u>0.37</u>	<u>0.84</u>
Precipitation vs. Leaf Area Index	function_bar	1	<u>0.63</u>	0.68	0.34	0.58	0.56	0.43	0.50	0.85	0.59	<u>0.68</u>	<u>0.77</u>	0.20	0.59
Surface Downward SW Radiation vs. Gross Primary Productivity	function_bar	1	<u>0.74</u>	<u>0.79</u>	<u>0.77</u>	<u>0.65</u>	<u>0.72</u>	0.59	0.68	0.66	<u>0.48</u>	<u>0.67</u>	0.53	0.28	<u>0.69</u>
Surface Net SW Radiation vs. Gross Primary Productivity	function_bar	1	<u>0.77</u>	<u>0.82</u>	<u>0.62</u>	<u>0.68</u>	<u>0.76</u>	0.66	<u>0.78</u>	<u>9.74</u>	0.60	<u>0.64</u>	0.59	0.40	<u>0.74</u>
Surface Air Temperature vs. Burned Area	function_bar	1	<u>0.41</u>	•	· ·		<u>0.43</u>	1.1		•		•	0.43	-	0.46
Surface Air Temperature vs. Evapetranspiration	function_bar	1	<u>0.68</u>	<u>0.75</u>	<u>0.63</u>	<u>0.83</u>	0.64	0.66	0.65	<u>0.58</u>	<u>0.74</u>	<u>0.65</u>	<u>0.77</u>	<u>0.72</u>	0.60
Surface Air Temperature vs. Gross Primary Productivity	function_bar	1	<u>0.78</u>	<u>0.76</u>	<u>0.67</u>	<u>0.73</u>	<u>0.69</u>	<u>0.68</u>	0.75	<u>0.58</u>	<u>0.61</u>	<u>0.70</u>	<u>0.56</u>	0.36	0.63
Overall			0.70	0.65	0.54	0.62	0.66	0.58	0.59	0.59	0.56	0.58	0.65	0.40	0.64

Variable to Variable Relationships (Info for Weightings)



Gross Primary Production vs. Precipitation

Metric Scoring for Next Generation System

Ecosystem and Carbon Cycle

	bcc-csm1-1	bec-csm1-1 m	BNU-ESM	CanESM2	CCSM4	CESML-BG	GFDL+ ESM2G	HadGEM2- CC	HadGEM2- ES	inmem4	IPSL-CM5A	 IPSL-CM5A MR 	MIROC-ESM	MIROC-ESM CHEM	¹ MPI-ESM-L	R MRI-ESML	NorESM14	NorESM1-	IE
Biomass	~	-	~	~	~	~	~	~	-	~	~	~	-	~	~	~	~	~	-
Burned Area	~		~	~	~	~	~	~		~	~	~		~	~		~	~	•
Carbon Dioxide	~		~	~		-	~	~		~	~	*	-	~	~	-	~	~	•
Gross Primary Productivity	0.53	0.57	0.52	0.47	0.52	0.52	0.52	0.51	0.51	0.05	0.50	0.52	0.55	0.55	0.55	0.45	0.54	0.54	•
Leaf Area Index	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
Global Net Ecosystem Carbon Balance	~	-	~	~	-		~	~	-	~	~	~		~	~	-	~	~	-
Net Ecosystem Exchange	~		~	~	~	~	~	~		~	~	~		~	~		~	~	-
Ecosystem Respiration	~		~	~	~	~	~	~		~	~	~		~	~		~	~	-
Soil Carbon	~		~	~	-		~	~		~	~			~	~		-	~	

Hydrology Cycle

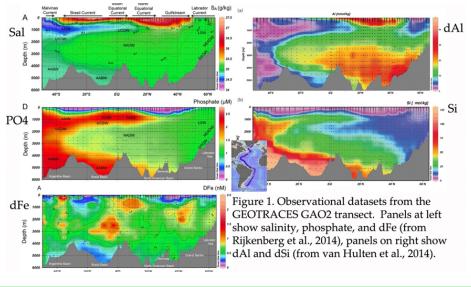
	hee-esm1-t	bcc-csm1-1 m	BNU-ESM	CanESM2	CCSM4	CESM1-BGC	GFDL+ ESM2G	HadGEM2+ CC	HadGEM2+ ES	inmon4	IPSL-CM5A LR	 IPSL-CM5A MR 	MIROC-ESM	MIROC-ESM CHEM	⁴ MPI-ESM-L	R MRI-ESML	NorESM1-M	NorESM1-M
Evapotranspiration																		
Latent Heat	0.39	0.39	0.43	0.36	0.44	0.44	0.41	0.42	0.42	0.40	0.44	0.42	0.43	0.43	0.40	0.41	0.45	0.45
Fluxnet-MTE (75.0%)	0.27	0.26	0.31	0.28	0.31	0.31	0.29	0.28	0.28	0.28	0.31	0.30	0.34	0.34	0.28	0.27	0.34	0.33
Flurnet (25.0%)	0.77	0.76	0.78	0.60	0.83	0.83	0.78	0.86	0.85	0.77	0.83	0.78	0.71	0.71	0.76	0.82	0.79	0.78
Terrestrial Water Storage Anomaly	~		~	~			~	~		~	~	~		~	N		~	~

Radiation and Energy Cycle

	hec-csm1-1	bcc-csm1-1- m	BNU-ESM	CanESM2	CCSM4	CESML-BG	CFDL- ESM2G	HadGEM2- CC	HadGEM2+ ES	inmom4	IPSL-CM5A- LR	IPSL-CM5A- MR	MIROC-ESM	MIROC-ESM CHEM	MPHESMILR	MRI-ESML	NorESM1-M	NorESM1-M	E
Albedo																			-
Surface Upward SW Radiation	~	-	~	~	~	~	~	~	-	~	~	~	-	~	~	~	~	~	-
Surface Net SW Radiation	~		~	~	~	~	~	~		~	~	~		~	~		~	~	-
Surface Upward LW Radiation	~		~	~	~	-	~	~		~	~	~	-	~	~		~	~	-
Surface Net LW Radiation	-	-	-	~	-	-	~	~	-	~	~	-	-	~	~	-	-	~	-
Surface Net Radiation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
Sensible Heat	~	-	~	~	-	-	~	~	-	~	~	-	-	~	~	-	~	~	-

Forcings

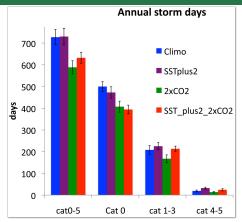
	bcc-csm1-1	bcc-csm1-1-	BNU-ESM	CanESM2	CCSM4	CESM1-BGC	GFDL+ ESM2G	HadGEM2- CC	HadGEM2+ ES	inmem4	IPSL-CM5A- LR	IPSL-CM5A- MR	MIROC-ESM	MIROC-ESM CHEM	'MPI-ESM-LR	MRI-ESM1	NorESM1-M	NorESM1-M	
Surface Air Temperature	~	-	~	~	-	-	~	~	-	~	~	~	-	~	~	-	-	~	-
Precipitation	0.36	0.35	0.36	0.36	0.37	0.37	0.35	0.36	0.36	0.34	0.35	0.35	0.36	0.36	0.35	0.35	0.36	0.36	-
Surface Downward SW Radiation	-	-	-	~	-	-	-	-	-	-	~	-	-	-	-	-	-	~	Ŧ
Surface Downward LW Radiation	~	~	~	~	~	~	~	~	~	~	~	~	-	~	~	~	~	~	-



Gross Primary Production in Next Generation System

			GF	PFluxnetGlo	balMTE / CESN	11-BGC / glo	bal			
				-	lobal (global)					C
Model		PeriodMean [Pg y ⁻¹]						SeasonalCycleScore [·]		
bcc-csm1-1-m	ы	112.727	-5.899	33.79	-50.776	0.951	0.758	0.409	0.719	
BNU-ESM	Ð	105.936	-12.899	34.291	-53.531	0.897	0.755	0.395	0.701	
CanESM2	Ð	130.126	11.341	25.989	-20.747	0.909	0.809	0.312		
CESM1-BGC	Ð	129.312	10.542	30.063	-43.588	0.915	0.782	0.357	0.709	
GFDL-ESM2G	Ŀ	169.109	50.129	66.266	-36.42	0.655	0.582	0.33	0.537	
HadGEM2-ES	Ð	138.378	19.617	35.684	-42.434	0.848	0.747	0.329	0.668	
inmcm4	Ŀ	137.359	18.594	35.237	-45.911	0.855	0.75	0.387	0.685	
IPSL-CM5A-LR		168.765	49.83	76.518	-43.621	0.657	0.535	0.334	0.515	
MIROC-ESM	Ŀ	129.69	10.816	40.742	-43.305	0.913	0.717	0.356	0.676	
MRI-ESM1	Ŀ	244.217	125.162	138.38	-45.615	0.348	0.323	0.351	0.336	
MultiModelMea		139.988	21.295	40.77	-41.101	0.836	0.716	0.305	0.643	
NorESM1-ME	Ð	130.348	11.57	30.453	-39.748	0.907	0.78	0.37	0.709	
Spatially inte 180 160 5 140 0 120 0 120) F'	d regional mean								

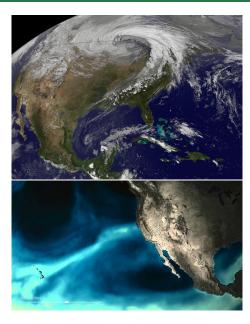
Future Ocean Biogeochemistry Metrics



Storm Metrics – Tropical Cyclones

- # of storms per year
 - global and by basin
 - fraction of Atlantic cyclogenesis in the Caribbean
- # of storm days per year
- Intensity distribution according to Sapphir-Simpson scale
 - S-S is a point wise measure
 - better alternatives would be characteristic of the whole storm
 - some alternate measures of storm properties at the surface:
 - accumulate cyclone energy
 - integrated kinetic energy
 - power dissipation index
 - cyclone damage potential
 - hurricane hazard index

Wehner et al. (2015)


- Future measures could characterize the vertical structure of TCs
- Size or radius is also important
- Computationally intensive!

Extra-tropical Cyclones

 # of ETCs each year is presently unknown

Atmospheric Rivers

- AR on the west coast are well characterized
- not so much anywhere else
- definition is quite arbitrary in any event

