C-LAMP Computational Resources Protocol Output Metrics Results Recent Progress & Future Directions Questions?

The Carbon-Land Model Intercomparison Project (C-LAMP)

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton^{3,1}, Natalie M. Mahowald^{3,4}, Keith Lindsay³, Yen-Huei Lee³, Cynthia D. Nevison^{5,3}, Scott C. Doney⁶, Gordon B. Bonan³, Reto Stöckli^{7,8}, Curtis C. Covey⁹, Steven W. Running¹⁰, and Inez Y. Fung¹¹

¹Oak Ridge National Laboratory, ²University of California-Irvine,³ National Center for Atmospheric Research, ⁴Cornell University, ⁵University of Colorado Boulder, ⁶Woods Hole Oceanographic Institute, ⁷Clorado State University, ⁸MeteoSwiss, ⁹Lawrence Livermoce National Laboratory,⁷PCMDJ, ¹⁰University of Montana, and ¹¹University, of California-Berkeley

> SMC-IT Workshop on IT for Climate Research 21 July 2009 • Pasadena, California, USA

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton

The Carbon-Land Model Intercomparison Project (C-LAMP)

90

- The Carbon-Land Model Intercomparison Project (C-LAMP) began as a CCSM Biogeochemistry Working Group project to assess model capabilities in the coupled climate system and to explore processes important for inclusion in the CCSM4 Earth System Model for use in the IPCC Fifth Assessment Report (AR5).
- Unlike traditional MIPs, C-LAMP was designed to confront models with best-available observational datasets, develop metrics for evaluation of biosphere models, and build a general-purpose BGC diagnostics package for model evaluation.

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornto The Carbon-Land Model Intercomparison Project (C-LAMP)

- C-LAMP is a Biogeochemistry Subproject of the Computational Climate Science End Station (Warren Washington, PI), a U.S. Dept. of Energy INCITE Project.
- Models were initially run on the Cray X1E vector supercomputer in ORNL's National Center for Computational Sciences (NCCS). Cray X1E (phoenix)

1024 processors (MSPs), 2048 GB memory, and 18.08 TFlop/s peak DECOMMISSIONED September 30, 2008

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton The Carbon-Land Model Intercomparison Project (C-LAMP)

Present Jaguar: 250 TFlop/s

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornto

The Carbon-Land Model Intercomparison Project (C-LAMP)

New Jaguar: Second Fastest in the World at 1.059 PFlop/s

JAR World's Most Powerful Computer. For Science! "The Jaguar system at ORNL provides immense computing power in a balanced, stable system that is allowing scientists and engineers to tackle some of the world's most challenging problems."

-2008, Kelvin Droegemeier, Meteorology Professor, University of Oklahoma.

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton The Carbon-Land Model Intercomparison Project (C-LAMP)

・ロン ・回と ・ヨン・

C-LAMP Protocol Overview

- Experiment 1: Models forced with an improved NCEP/NCAR reanalysis climate data set (Qian, *et al.* 2006) to examine the influence of climate variability, prescribed atmospheric CO₂, and land cover change on terrestrial carbon fluxes during the 20th century (specifically 1948–2004).
- Experiment 2: Models coupled with an active atmosphere (CAM3), prescribed atmospheric CO₂, prescribed sea surface temperatures and ocean carbon fluxes to examine the effect of a coupled biosphere-atmosphere for carbon fluxes and climate during the 20th century.
- CCSM3.1 partially coupled ("I" & "F" configurations) run at T42 resolution ($\sim 2.8^{\circ} \times 2.8^{\circ}$), spectral Eulerian dycore, $1^{\circ} \times 0.27^{\circ}$ -0.53° ocean & sea ice data models (T42gx1v3).
- Experimental protocol, output fields, and metrics are available at http://www.climatemodeling.org/c-lamp/

C-LAMP, C⁴MIP, and iLEAPS

- C-LAMP Experiment 2 is patterned after C⁴MIP (Coupled Climate-Carbon Cycle Model Intercomparison Project, http://www.c4mip.cnrs-gif.fr/) Phase 1.
- At the October 2006 C⁴MIP Workshop at the UK Met Office in Exeter, there was strong interest in Experiment 1 and validation experiments using Fluxnet observations.
- At the Marie Curie/iLEAPS Workshop in Hyères, a number of modeling groups expressed interest in consistent model validation and model-data comparisons for their coupled biosphere models, but best-available observations from ground and satellite measurements are difficult to manipulate.
- C-LAMP is sharing forcing and observational datasets, and model results are available through the Earth System Grid (ESG), just like for CMIP3 (the IPCC AR4 model results).

	Offline Forcing with NCEP/NCAR Reanalysis							
Exp.	Description	Time Period						
1.1	Spin Up	\sim 4,000 y						
1.2	Control	1798-2004						
1.3	Varying climate	1948-2004						
1.4	Varying climate, CO_2 , and N deposition	1798-2004						
1.5	Varying climate, CO_2 , N deposition and land use	1798-2004						
1.6	Free Air CO ₂ Enrichment (FACE) Control	1997-2100						
1.7	Free Air CO ₂ Enrichment (FACE) Transient	1997–2100						
	Coupled Land-Atmosphere Forcing with Hadley SSTs							
Exp.	Time Period							
2.1	Spin Up	\sim 2,600 y						
2.2	Control	1800-2004						
2.3	Varying climate	1800-2004						
2.4	Varying climate, CO_2 , and N deposition	1800-2004						
2.5	Varying climate, CO ₂ , N deposition and land use	1800-2004						
2.6	Varying climate, CO_2 , N deposition, seasonal FFE	1800-2004						

All but the land use experiments were run with CCSM3.1 using CLM3-CASA' and CLM3-CN biogeochemistry models yielding >16,000 y and ~50 TB

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornto The Carbon-Land Model Intercomparison Project (C-LAMP)

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornto

C-LAMP Performance Metrics and Diagnostics

- An evolving draft document on metrics for model evaluation is available at http://www.climatemodeling.org/c-lamp/
- Each model is scored with respect to its performance on various output fields compared with best-available observational datasets.
- Examples include:
 - net primary production (NPP) from EMDI and MODIS
 - leaf area index (LAI) using MODIS spatial distribution and phase
 - CO₂ seasonal cycle (NOAA/Globalview flask sites, after running fluxes through an atmospheric transport model for Experiment 1)
 - regional carbon stocks (Saatchi et al., 2006; Batjes, 2006)
 - carbon and energy fluxes (Fluxnet sites)
 - transient dynamics (β factor, etc.)
- More diagnostic or metric ideas? Please contribute them!

• 🛛 🖸 😣 :	🕋 💽 http://w	ww.climatemodeling.or	g/c-lamp/results/diagr	nostics/CN_vs_C/ 🏠	~ G ~	Google		0
MP Score SI	neet for Bio	geochemical M	odel Evaluatio	<u>n</u>				<(
Metric	Metric components	Observations & comparison protocol	Model CASA'	Model CN	Score Possible	(points CASA'	s) CN	
	MODIS Phase	global map	global map model vs obs	global map model vs obs	6.00	5.11	4.24	
LAI	MODIS Maximum	global map	global map model vs obs	global map model vs obs	5.00	4.60	4.26	
	MODIS Mean	land class obs land class model global map	model vs obs table global map model vs obs	model vs obs table global map model vs obs	4.00	3.75	3.53	
	EMDI NPP	Class A table	table scatter plot	table scatter plot	1.00	0.68	0.73	
	observations	Class B table	table scatter plot	table scatter plot	1.00	0.83	0.82	
	EMDI NPP normalized by PPT	Class A histogram	Class A histogram	Class A histogram	2.00	1.50	1.74	
NPP		Class B histogram	Class B histogram	Class B histogram	2.00	1.51	1.65	
	Correlation with MODIS	global map	model map model vs obs	model map model vs obs	2.00	1.64	1.44	
	Correlation with MODIS-zonal mean	zonal mean obs	zonal mean model vs obs plot	zonal mean model vs obs plot	2.00	1.88	1.84	
CO ₂ Seasonal Cycle	60°N-90°N	-	-	-	6.00	4.11	2.77	
 Comparison with Globalview phase 	30°N-60°N	-	-	-	6.00	4.23	3.23	
and amplitude	0°N-30°N	-	-	-	3.00	2.07	1.71	
	NEE				-	-	-	
Energy and C Fluxes	Net radiation	line slat	modelus also	modelus aka	-	-	-	
from Fluxnet	Latent heat	inte prot	model vs obs	model vs obs	-	-	-	
	Sensible heat				-	-	-	
	NEE				6.00	2.46	2.13	
	Shortwave Incoming				-	-	-	
Energy and C Fluxes	Latent heat	line plot	model vs obs	model vs obs	9.00	6.38	6.39	
from Ameriflux	Sensible heat		timeseries plot	timeseries plot	9.00	4.90	4.64	
	GPP				6.00	3.39	3.46	
	ER					_	_	
	Aboveground live							

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton

The Carbon-Land Model Intercomparison Project (C-LAMP)

lit ⊻iew Hi <u>s</u> tor	y <u>B</u> ookmarks]	[ools <u>H</u> elp						1
- 🛛 🛇 :	🕋 💽 http://w	ww.climatemodeling.	org/c-lamp/results/diag	nostics/CN_vs_C/ 🏠 🗸	G~			0,
CO ₂ Seasonal Cycle	60°N-90°N	-	-	-	6.00	411	2.77	P
- Comparison with	30°N-60°N	-	-	-	6.00	4.23	3.23	
and amplitude	0°N-30°N	-	-	-	3.00	2.07	1.71	
	NEE				_	_	-	
Energy and C Eluxes	Net radiation				-	-	-	
from Fluxnet	Latent heat	line plot	model vs obs	model vs obs	-	-	-	
	Sensible heat				-	-	-	
	NEE				6.00	2.46	2.13	
	Shortwave Incoming				-	-	-	1
Energy and C Fluxes	Latent heat	line plot	model vs obs	model vs obs	9.00	6.38	6.39	
Irom Ameniux	Sensible heat		unreseries proc	unreseries proc	9.00	4.90	4.64	
	GPP				6.00	3.39	3.46	
	ER				-	-	-	n
	Aboveground live biomass in South America	obs amazon	model amazon model vs obs	amazon map model vs obs	10.00	5.28	4.99	
	Aboveground live biomass within Amazon Basin (sum within Legal Amazon)	obs masked 68.90 (Pg C)	model masked model vs obs 198.87 (Pg C)	model masked model vs obs 160.61 (Pg C)	-	_	_	
	NPP Stimulation from elevated CO ₂	-	FACE Site table biome table	EACE Site table	10.00	7.87	4.11	
Carbon Stocks and Transient Dynamics	Interannual variability of global carbon fluxes - comparison with TRANSCOM	-	-	-	5.00	3.55	3.00	
	Turnover times and pool sizes	_	Leaf Wood Fine Root Litter Coarse Woody Debris Soil	Leaf Wood Fine Root Litter Coarse Woody Debris Soil	_	_	_	
	Carbon Sinks (1990–2004)	-	biome mean biome total	biome mean biome total	-	-	-	
	Fire Variability (1997–2004)	-	-	global spatial comparison temporal dynamics	5.00	-	1.70	
				Total Score	100.00	65.74	58.38	
								- 12

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton

The Carbon-Land Model Intercomparison Project (C-LAMP)

- Comparisons with field observations include net primary production (NPP) from the Ecosystem Model-Data Intercomparison (EMDI).
- Measurements were performed in different ways, at different times, and by different groups for a limited number of field sites.
- Shown here are comparisons of NPP with EMDI Class A observations (Figures a and b) and Class B observations (Figures c and d).

Data provided by NASA Distributed Active Archive Center (DAAC) at ORNL

- Comparisons with satellite "modeled observations" must be made carefully because of high uncertainty.
- This comparison with MODIS leaf area index (LAI) focuses on the month of maximum LAI (phase), a measurement with less uncertainty than the "observed" LAI values.
- C-LAMP accounts for this uncertainty by weighting scores accordingly.
- CLM-CASA' scored 5.1/6.0 while CLM-CN scored 4.2/6.0 for this metric.

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton The Carbon-Land Model Intercomparison Project (C-LAMP)

- MODIS net primary production (NPP)
 "observations" have higher uncertainty.
- Comparison with MODIS NPP focuses on correlation of spatial patterns.
- CLM-CASA' scored 1.6/2.0 while CLM-CN scored 1.4/2.0.

- Estimates of carbon stocks are very difficult to obtain.
- This comparison with estimates of aboveground live biomass in the Amazon by Saatchi *et al.* (2006) shows that both models are too high by about a factor of 2.
- Using a score based on normalized cell-by-cell differences, CLM-CASA' scored 5.3/10.0 while CLM-CN scored 5.0/10.0.

- Comparisons with AmeriFlux eddy correlation CO₂ flux tower sites include net ecosystem exchange (NEE), gross primary production (GPP), respiration, shortwave incoming radiation, and latent and sensible heat.
- Shown here is a comparison of CLM-CASA' results with the Morgan Monroe L4 time series data.
- All AmeriFlux data are stored and distributed by ORNL's Carbon Dioxide Information Analysis Center (CDIAC).

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton

The Carbon-Land Model Intercomparison Project (C-LAMP)

- Additional field measurement comparisons include the Free Air CO₂ Enrichment (FACE) results, including the ORNL site.
- The Norby *et al.* (2005) synthesis of four FACE site observations suggested "response of forest NPP to elevated $[CO_2]$ is highly conserved across a broad range of productivity, with a stimulation at the median of $23 \pm 2\%$."
- A C-LAMP experiment was added to test this result by increasing [CO₂] to 550 ppmv in 1997.

	Lon	Lat	Observa	ations		CASA'			CN	
Site Name	(°E)	(° N)	NPP↑	β_L	NPP↑	β_L	Score	NPP↑	β_L	Score
Duke	-79.08	35.97	28.0%	0.69	16.4%	0.41	0.26	6.2%	0.15	0.65
Aspen	-89.62	45.67	35.2%	0.87	15.6%	0.39	0.39	12.4%	0.31	0.48
ORNL	-84.33	35.90	23.9%	0.59	17.3%	0.43	0.16	5.2%	0.13	0.64
POP-Euro	11.80	42.37	21.8%	0.54	20.0%	0.49	0.04	5.7%	0.14	0.59
	4 sit	e mean	27.2%	0.67	17.3%	0.43		7.4%	0.18	
			Total M	Score			0.79			0.41

But! Norby is now reporting reduced NPP enhancement at the ORNL FACE site due probably to N limitation!

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornto The Carbon-Land Model Intercomparison Project (C-LAMP)

Э.

C-LAMP Score Sheet for CLM3-CASA' and CLM3-CN

		Uncertainty	Scaling	Total				-	
Metric	Metric components	of obs.	mismatch	score	Sub-score	CASA'		CN	
LAI	Matching MODIS observations			15.0		13.5		12.0	-
	· Phase (assessed using the month of maximum LAI)	Low	Low		6.0		5.1		4.2
	 Maximum (derived separately for major biome classes) 	Moderate	Low		5.0		4.6		4.3
	 Mean (derived separately for major biome classes) 	Moderate	Low		4.0		3.8		3.5
NPP	Comparisons with field observations and satellite products			10.0		8.0		8.2	
	 Matching EMDI Net Primary Production observations 	High	High		2.0		1.5		1.6
	 EMDI comparison, normalized by precipitation 	Moderate	Moderate		4.0		3.0		3.4
	 Correlation with MODIS (r²) 	High	Low		2.0		1.6		1.4
	 Latitudinal profile comparison with MODIS (r²) 	High	Low		2.0		1.9		1.8
CO2 annual cycle	Matching phase and amplitude at Globalview flash sites			15.0		10.4		7.7	
	• 60°-90°N	Low	Low		6.0		4.1		2.8
	• 30°-60°N	Low	Low		6.0		4.2		3.2
	• 0°-30°N	Moderate	Low		3.0		2.1		1.7
Energy & CO2 fluxes	Matching eddy covariance monthly mean observations			30.0		17.2		16.6	-
	 Net ecosystem exchange 	Low	High		6.0		2.5		2.1
	 Gross primary production 	Moderate	Moderate		6.0		3.4		3.5
	Latent heat	Low	Moderate		9.0		6.4		6.4
	Sensible heat	Low	Moderate		9.0		4.9		4.6
Transient dynamics	Evaluating model processes that regulate carbon exchange			30.0		16.8		13.8	-
	on decadal to century timescales								
	 Aboveground live biomass within the Amazon Basin 	Moderate	Moderate		10.0		5.3		5.0
	· Sensitivity of NPP to elevated levels of CO2: comparison	Low	Moderate		10.0		7.9		4.1
	to temperate forest FACE sites								
	 Interannual variability of global carbon fluxes: 	High	Low		5.0		3.6		3.0
	comparison with TRANSCOM								
	· Regional and global fire emissions: comparison to	High	Low		5.0		0.0		1.7
	GFEDv2								
			Total:	100.0		65.9		58.3	-

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton The Carbon-Land Model Intercomparison Project (C-LAMP)

伺い イヨト イヨト

Collaboration with SciDAC Visualization and Analytics Center for Enabling Technologies (VACET)

 C-LAMP and other model results are being used by members of VACET at the National Center for Computational Sciences (NCCS) to explore high performance visualization techniques.

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton The Carbon-Land Model Intercomparison Project (C-LAMP)

Collaboration with SciDAC Visualization and Analytics Center for Enabling Technologies (VACET)

 C-LAMP model results and MODIS satellite data are being used by Jian Huang's group at the University of Tennessee, Knoxville (UTK) applying novel statistical methods to the analysis of very large climate data sets.

The slope of temporal change (λ) in exposed one-sided leaf area index (ELAI) relative to the April–May change. Red areas "green up" sooner in the year while blue areas "green up" later in the year over the 1850–2000 period.

3

Earth System Grid (ESG) Node at ORNL for C-LAMP

File Edit View Go Bookmarks Tools Help File Edit View Go Bookmarks Tools Help File Edit View File Bookmarks Tools Help File Edit View File Bookmarks Tools Help File Edit View Help File Edit View Help File Edit View Help File Edit View File Bookmarks Tools Help File Edit View Help File Edit View Help File Edit View Help File Edit View File Bookmarks Tools Help File Edit View Help File Edit View Help File Edit View Help File Edit View File Bookmarks Tools Help File Edit View Help	C-LAMP Model Data - Mozilia Firefox	
Image: Second Secon	File Edit View Go Bookmarks Tools Help	0
Celement Data About ESG Consert Vencome Welcome to the CCES CLAMP data portal. If you are now to this site, pease review the help page: Registration Searching Browsing and Downloading from FP CCSM Carbon LAnd Model Intercomparison Project (C-LAMP) Mene 1 Data About ESG Login Login Batus: Not Boggei In. Page- 2004. UCAR. All rights reserved. Page- 35 Carbon, Page- 35 Carbon, All rights reserved. Page- 35 Carbon, Page	🖕 • 🧼 • 🥰 🙁 😭 🗋 https://esg2.oml.gov:8443/ 🔂 💌 🕻	Go G.
Versone Verso	Home C-LAMP Model Data	Scientific Discovery through Advanced Computing
Velcome Data Search CCES C-LAMP Portal Collaborators Search data portal gages: Registrator Search Search CCES C-LAMP Portal Collaborators Browsing and Downloading Data Engels:: Cost Cataboa CCES C-LAMP Portal Collaborators Browsing and Downloading from FP Engels: CCSM Cataboa LAnd Model intercomparison Project (C-LAMP) Forme Data Aboat ES0 Login Login Batus: Hot baged in: Login Batus: Hot baged in: Login Batus: Hot baged in: VolAR: Allights reserved. Praces 2004; Hotess Searching. All rights reserved. Praces 2004; Hotess Searching. All rights reserved.	Contact ESG	
Done esq2.ornl.gov:8443 🐴 🍙	Welcome Data Search Sectome to the CCES C-LAMP data portal. If, you are new to this file, please review the help: please review the help: Search pages: Searching Registration Searching Searching Searching Bowsing and Downloading Data Downloading from FPF Encomes Dataset Catalogs CCSM Cathon LAnd Model Intercomparison Project (C-LAMP) CCSM Cathon LAnd Model Intercomparison Project (C-LAMP) Mense 1 Data [About ES9] Login Login Status: Not Deged In. 2004, UCAR. All typits mesned. Promes 2004. The Regented to thus helps of Cathonins. All hights mesned. Phense 2 Searching Notese Promes 2004. The Regented to thus helps of Cathonins. All hights mesned.	CCES C-LAMP Portal Collaborators
	Done	esq2.ornl.gov:8443 👸 🍙

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton

The Carbon-Land Model Intercomparison Project (C-LAMP)

• Both models had a low LAI bias in boreal and arctic regions. This bias was partially eliminated by a new hydrology model capturing freeze-thaw dynamics.

向下 イヨト イヨト

- Both models had a low LAI bias in boreal and arctic regions. This bias was partially eliminated by a new hydrology model capturing freeze-thaw dynamics.
- Both models had a 1–3 month delay in the timing of maximum LAI. This bias was reduced in CLM3-CN where it was most significant.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Both models had a low LAI bias in boreal and arctic regions. This bias was partially eliminated by a new hydrology model capturing freeze-thaw dynamics.
- Both models had a 1–3 month delay in the timing of maximum LAI. This bias was reduced in CLM3-CN where it was most significant.
- Both models overestimate woody biomass in the Amazon Basin. Carbon comparisons with Malhi *et al.* (in press) suggest too much allocation to wood. Allocation in CLM3-CN was adjusted to reduce this bias.

(日本) (日本) (日本)

- Both models had a low LAI bias in boreal and arctic regions. This bias was partially eliminated by a new hydrology model capturing freeze-thaw dynamics.
- Both models had a 1–3 month delay in the timing of maximum LAI. This bias was reduced in CLM3-CN where it was most significant.
- Both models overestimate woody biomass in the Amazon Basin. Carbon comparisons with Malhi *et al.* (in press) suggest too much allocation to wood. Allocation in CLM3-CN was adjusted to reduce this bias.
- The models differed by a factor of two in annual carbon sinks. Both results are compatible with atmospheric budgets given other uncertainties.

• Both models underestimated the amplitude of the seasonal cycle of CO_2 in the northern hemisphere. Adjustment of the Q_{10} for heterotraphic respiration from 2.0 to 1.5 in CLM3-CASA' reduces this bias. Adoption of the same Q_{10} formulation, in place of Lloyd & Taylor, reduces this bias in CLM3-CN. The Q_{10} for maintenance respiration in CLM3-CN was also reduced from 2.0 to 1.5.

向下 イヨト イヨト

- Both models underestimated the amplitude of the seasonal cycle of CO_2 in the northern hemisphere. Adjustment of the Q_{10} for heterotraphic respiration from 2.0 to 1.5 in CLM3-CASA' reduces this bias. Adoption of the same Q_{10} formulation, in place of Lloyd & Taylor, reduces this bias in CLM3-CN. The Q_{10} for maintenance respiration in CLM3-CN was also reduced from 2.0 to 1.5.
- CLM3-CN seasonal cycle was out of phase with observations. A new day-length control on photosynthesis mechanism mitigates this bias in CLM3-CN.

(日本) (日本) (日本)

C-LAMP Paper in Press in Global Change Biology

Global Change Biology (2009), doi: 10.1111/j.1365-2486.2009.01912.x

Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models

JAMES T. RANDERSON*, FORREST M. HOFFMAN†, PETER E. THORNTON‡§, NATALIE M. MAHOWALD¶, KEITH LINDSAY‡, YEN-HUEI LEE‡, CYNTHIA D. NEVISON*∥, SCOTT C. DONEY*, GORDON BONAN‡, RETO STÖCKLI↑↑↑‡, CURTIS COVEY§§, STEVEN W. RUNNING¶ and INEZ Y. FUNG|||

*Department of Earth System Science, Croul Hall, University of California, Ircine, CA 92697, USA, YOAk Ridge National Laboratory, Computational Earth Sciences Group, PO Box 2008, Oak Ridge, TN 37831, USA, †Climate and Global Dynamics, National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA, §Oak Ridge National Laboratory, Environmental Sciences Division, PO Box 2008, Oak Ridge, TN 37831, USA, ¶Department of Earth and Atmospheric Sciences, 2140 Smee Hall, Cornell University, Ithaan, NY 14850, USA, ¶Determistry and Geachemistry, MS 255, Woods Hele Oceanographic Institution, Woods Hole, MA 02543, USA, *†Department of Marine Chemistry and Geachemistry, MS 255, Woods Hele Oceanographic Institution, Woods Hole, MA 02543, USA, *†Department of Atmospheric Sciences, Colorado State University, Ft Collins, CO 80523, USA, ‡‡MeteoScies, Climate Service, Federal Office of Meteorology and Climatology, CH-8044 Zurich, Suitzerland, §\$Program for Climate Model Disgnosis and Intercomparison, 7000 East Acenue, Bdg, 710, 1-103, Livermore, CA 94550-9234, USA, ¶Numerical Terradynamic Simulation Group, College of Forestry & Conservation, University of Montana, Missoula, MT 59812, USA, ¶Department of Earth and Planetary Science and Department of Environmental Science, Policy, and Management, 307 McCore, Mail Code 4767, University of California, Berkhey, CA 94720, USA

Abstract

With representation of the global carbon cycle becoming increasingly complex in climate models, it is important to develop ways to quantitatively evaluate model performance against *in situ* and remote sensing observations. Here we present a systematic framework, the Carbon-LAnd Model Intercomparison Project (C-LAMP), for assessing terrestrial biogeochemistry models coupled to climate models using observations that span a wide range of temporal and spatial scales. As an example of the value of such

Recent Progress

- C-LAMP drove the development of model improvements in the terrestrial biogeochemistry models for the Community Land Model verison 4 (CLM4).
- Subsequent C-LAMP analyses of six model configurations using CLM3.6 (a pre-release version of CLM4) with CASA' and CN demonstrated better performance by CN.
- Therefore, the CLM4 release will include CN. That configuration will probably be called CLM4-BGC.
- CLM4-BGC will be part of the Community Climate System Model version 4 (CCSM4), which may be called the Community Earth System Model (CESM). This model will be used for IPCC AR5 simulations.
- The physical models for CCSM4 are expected to be finalized before the end of 2009, and the full ESM configuration will follow within six months.

Future Directions

- Working with both observational data centers and Earth System Grid centers, we hope to automate retrieval and processing of both the observational datasets and model results, and provide a web-based diagnostics interface for modelers.
- Participate in the development of an International Land Model Benchmarking (iLAMB) activity, formulating experiments, metrics, and diagnostics for detailed comparison of land/biosphere models for the IPCC Fifth Assessment Report (AR5). The first international meeting was held in June (Exeter, UK); follow-up meetings are planned in conjunction with GEWEX/iLEAPS in August (Melbourne, Australia), with ICDC8 in September (Jena, Germany), and in Spring 2010 (California, USA).

・ロン ・回 と ・ ヨン ・ ヨン

Thank you!

Questions?

More Discussion?

Contact: Forrest Hoffman (forrest@climatemodeling.org)

Forrest M. Hoffman¹, James T. Randerson², Peter E. Thornton

The Carbon-Land Model Intercomparison Project (C-LAMP)

<ロト < 回 > < 三 > <