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US Dept. of Energy’'s RUBISCO Science Focus Area

Forrest M. Hoffman (Laboratory Research Manager),
William J. Riley (Senoir Science Co-Lead), and
James T. Randerson (Chief Scientist)
Research Goals
» Identify and quantify interactions between
biogeochemical cycles and the Earth system

» Quantify and reduce uncertainties in Earth system
models (ESMs) associated with interactions

Research Objectives

» Perform hypothesis-driven analysis of biogeochemical &
hydrological processes and feedbacks in ESMs

» Synthesize in situ and remote sensing data and design
metrics for assessing ESM performance

» Design, develop, and release the International Land
Model Benchmarking (ILAMB) and International Ocean
Model Benchmarking (IOMB) packages for systematic
evaluation of model fidelity

» Conduct and evaluate CMIP6 simulations with ESMs

Measurements & Experiments Community

for Understanding Fundamental Processes
« AmeriFlux

* Fluxnet Measurement Remote ‘ Manipulation ‘ ::;'zléCE
« NGEE Arctic ®  campaigns sensing experiments 1
« NGEE Tropics * TRACE

NEW MEASUREMENT CAMPAIGNS

[ Gmsco |

NEW MODEL IMPROVEMENTS
( Modeling Model Sensitivity w
v groups comparisons experiments
MODEL 4—f T T f—» EARTH SYSTEM
TESTBEDS ¢ » GRID FEDERATION
« E3SM Earth System Modeling Community
« CESM for Predicting Impacts of Environmental Change

The RUBISCO SFA works with the measurements and
the modeling communities to use best-available data to
evaluate the fidelity of ESMs. RUBISCO identifies
model gaps and weaknesses, informs new model
development efforts, and suggests new measurements
and field campaigns.
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DOE's Model-Data-Experiment Enterprise

Model development H Model simulations,
employing modular evaluation, analysis, and

design benchmarking
Advanced FATES  GCAM \ Data
computational SELOTRAS E3sM LLD assimilation
methods Amanzi-ATS e
Py-ART -diogs
ParFlow EASSO TECA
CrunchFlow CMEC PMP

COMMUNITY DATA, MODELS,
AND ANALYSIS CAPABILITIES

Data synthesis, Watershed Research ppyic;  AmeriFlux UV-CDAT Identification of

scaling, and key knowledge gaps
integration ExaSheds PEAn  CMIPG NGEE-Tropics
FACE _— NGEE-Arctic
PCMDI ESGF
ARM Data Center
Field measurements Process research, site

and manipulative characterization, and
experiments experimental design
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Problem: Model Uncertainty

Model uncertainty is one of the biggest challenges we face in Earth system science, yet

comparatively little effort is devoted to fixing it (Carslaw et al., 2018)
New Models Old Models

RCP85: 2081-2100 DJF SRES-A2: 2081-2100

» Model complexity is rapidly
increasing as detailed process
representations are added

NH Winter

» Evidence shows overall model
uncertainty is reduced only slowly
and is sometimes increased
(Knutti and Sedlacek, 2013)

» A balance must be struck
between model “elaboration” and
Precipitation change (%)

efforts to reduce model L .
} Patterns of precipitation change across two generations of
uncertainty models. Adapted from Knutti and Sedl&ek (2013).
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Why is Reducing Uncertainty a Challenge?

» Ecosystems have complex responses to a wide range of forcing factors in heterogeneous
spatial environments, requiring a highly multivariate approach

» The focus is on adding complexity (e.g., more detailed representations of plant traits,
photosynthesis, nutrient limitation, respiration), assuming more processes is better

v

However, model uncertainty may increase, even as predictions of states and fluxes improve

» Rigorous confrontation of models with independent observations and large ensembles of
simulations are required to reduce uncertainty

» Modeling centers have a limited capacity to conduct sensitivity experiments and
systematically assess model fidelity, especially in fully coupled Earth system models

» Community-developed benchmarking tools are beginning to address part of the solution
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What is ILAMB?

Originally, ILAMB was a community activity designed to:

» Develop internationally accepted benchmarks for land model
performance by drawing upon collaborative expertise

» Promote the use of these benchmarks for model intercomparison

» Strengthen linkages between experimental, remote sensing, and
climate modeling communities in the design of new model tests

» Support the development of open source benchmarking tools
Now, ILAMB is a:

» Community: global group of modelers and scientists enthusiastic about
benchmarking

» Datasets: curated collection of datasets formatted for easy data-model
integration

» Methods: standard library of techniques for benchmarking models

» Software: an extensible open source Python package

» Results: an easy-to-use catalog of model-data comparisons Carbon and Biogeochemical Cycles
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» First ILAMB Meeting was held in Exeter, UK, on June 22-24, 2009

» Second ILAMB Meeting was held in Irvine, CA, USA, on January 24-26, 2011

» ~45 researchers participated from the United States, Canada, the United Kingdom, the Netherlands,
France, Germany, Switzerland, China, Japan, and Australia

» Initial focus on CMIP5 models

» Developed methodology for model-data comparison and baseline standard for performance of land
model process representations (Luo et al., 2012)
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A Framework for Benchmarking Land Models

» A benchmarking framework for
evaluating land models emerged and
included (1) defining model aspects to be
evaluated, (2) selecting benchmarks as
standardized references, (3) developing a
scoring system to measure model
performance, and (4) stimulating model
improvement

» Based on this methodology and prior work
on the Carbon-LAnd Model
Intercomparison Project (C-LAMP)
(Randerson et al., 2009), a prototype
model benchmarking package was
developed for ILAMB

‘Process Parameter
* Biophysics * State variables
* Hydrology * Rate variables
o i - 0

+ Vegetation dynamics + Feedback

* Observations
* Experimental results
* Data-model preducts
* Relationship and patterns ||

Temporal scale
* Spatial cover
» Error structure

Metrics of performance skills
ri thresholds

g systems
lering weights for

To determine model’s
\ ¢ Acceptability

- Ranking

‘- Strength and deficiency

different processes and
data sets

(Luo et al., 2012)
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Date Office of

us
DOE/SCHNX | doi10.7243/XXXXXXXK * ENERGY | Stence

2016

International Land Model
Benchmarking (ILAMB)
Workshop Report

International Land Model Benchmarkmg(ILAMB) orkshop
May 16-18, 2016, Washington, DC

Third ILAMB Workshop was held to identify
» New metrics for model benchmarking
» Model Intercomparison Project (MIP) evaluation needs
» Model development, test beds, and workflow requirements
» Observational datasets and needed measurements
Workshop Attendance

» 60+ participants from Australia, Japan, China, Germany, Sweden,
Netherlands, UK, and US (10 modeling centers)

> ~25 remote attendees at any time to enable participation by

students and postdocs and enhance diversity and inclusion (Hoffman et al., 2017)
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What Is A Benchmark?

Interannual Variability of Atmospheric Carbon Dioxide
T T T

RS
T

» A benchmark is a quantitative test of model function
achieved through comparison of model results with
observational data
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Detrended CO, mixing ratio (ppm)

Sand Island, Midway, USA
O 11
1234

Month

» Acceptable performance on benchmarks is a necessary but  wodeis often fail to capture the amplitude of the
. w .. . . seasonal cycle of atmospheric COy
not sufficient condition for a fully functioning model
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—+- Observations

|_-0o- CASA” 4
1500 27 &N

» Functional benchmarks offer tests of model responses to
forcings and yield insights into ecosystem processes
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» Effective benchmarks must draw upon a broad set of
independent observations to evaluate model performance at
multiple scales

@
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Net primary production (g C m™2 yr~!)

0 560 |0I00 15'00 20‘00
Precipitation (mm yr~")
Models may reproduce correct responses over
only a limited range of forcing variables
(Randerson et al., 2009)
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Why Benchmark Models?

» To quantify and reduce uncertainties in carbon cycle feedbacks to improve projections of future
climate change

> To quantitatively diagnose impacts of model development on hydrological and carbon cycle
process representations and their interactions

» To guide synthesis efforts, such as the Intergovernmental Panel on Climate Change (IPCC), by
determining which models are broadly consistent with available observations (Eyring et al., 2019)

» To increase scrutiny of key datasets used for model evaluation
> To identify gaps in existing observations needed to inform model development

> To accelerate delivery of new measurement datasets for rapid and widespread use in model
assessment
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ILAMB Produces Diagnostics and Scores Models

> ILAMB generates a top-level portrait plot of model scores

» For every variable and dataset, ILAMB automatically produces
» Tables containing individual metrics and metric scores (when relevant to the data), including

» Reference and model period mean

Bias and bias score (Spias)

Root-mean-square error (RMSE) and RMSE score (S;mse)
Phase shift and seasonal cycle score (Sphase)

Interannual coefficient of variation and 1AV score (Si.v)

Spatial distribution score (Saist)
» Overall score (Soveran) — Sovorall — Sbias+25”fj:;fff;i—l5iav+SdiSt

» Graphical diagnostics
» Spatial contour maps
» Time series line plots
» Spatial Taylor diagrams (Taylor, 2001)

VVYyVYY

» Similar tables and graphical diagnostics for functional relationships
» ILAMB design, theory, and implementation are described in Collier et al. (2018)

= A OAK AR
oo o4 2aamec IRNCAR  ¥Ribor

RUBISCO




ILAMBV2.5 Package Current Variables

» Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED4.1s), CO,
(NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, FLUXCOM), Leaf area index
(AVHRR, MODIS), Global net ecosystem carbon flux (GCP, Khatiwala/Hoffman), Net ecosystem
exchange (Fluxnet, FLUXCOM), Ecosystem respiration (Fluxnet, FLUXCOM), Soil C (HWSD,
NCSCDv2, Koven)

» Hydrology: Evapotranspiration (GLEAM, MODIS), Evaporative fraction (FLUXCOM), Latent heat
(Fluxnet, FLUXCOM, DOLCE), Permafrost (NSIDC), Runoff (Dai, LORA), Sensible heat (Fluxnet,
FLUXCOM), Terrestrial water storage anomaly (GRACE)

> Energy: Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES,
GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, GEWEX.SRB, WRMC.BSRN)

» Forcing: Surface air temperature (CRU, Fluxnet), Dirunal max/min/range temperature (CRU),
Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA), Surface down
SW/LW radiation (Fluxnet, CERES, GEWEX.SRB, WRMC.BSRN)
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ILAMB Assessed Several Generations of CLM

“
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[Ecosystem and Carbon Cycle
Biomass

» Improvements in mechanistic treatment of hydrology,
ecology, and land use with much more complexity in
Community Land Model version 5 (CLM5)

» Simulations improved even with enhanced complexity

Burned Area

Carbon Dioxide

Gross Primary Productivity

Leaf Area Index

Global Net Ecosystem Carbon Balance
Net Ecosystem Exchange

Ecosystem Respiration

ol ceon » Observational datasets are not always self-consistent
Hydrology Cycle

Evapotranspiration . .

T » Forcing uncertainty confounds assessment of model

Cetonthicay development

Runoff

Sensible Heat

Terrestrial Water Storage Anomaly ]
Permafrost

Radiation and Energy Cycle

Relative Scale

Albedo

Surface Upward SW Radiation http://webext.cgd.ucar.edu/I20TR/_build_setl1F/
Surface Net SW Radiation Worse Value  Better Value

Surface Upward LW Radiation . (LaWrenCe et al. f 2019)
Surface Net LW Radiation Missing Data or Error

Surface Net Radiation
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http://webext.cgd.ucar.edu/I20TR/_build_set1F/

Land Model Performance Depends Strongly on Forcing

(a) CMIPS: 19592005
n . I

(b) CLM: 1959-2014
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» Depending on the forcing used and the © (LOMPS; 1950200 ” s
metric selected, different models may perform o] = dlmomcy —awm /|
equally well g g ] A
» [LAMB scores for CLM4, CLM4.5, and CLM5 g ? 7 F
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and the cumulative land carbon sink for 3™ - '
CMIP5 models vs. offline CLM (right). N R " b
(Bonan et al., 2019) e i s e
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International Ocean Model Benchmarking (IOMB) Package

» Evaluates ocean biogeochemistry results compared
with observations (global, point, ship tracks)

» Scores model performance across a wide range of
independent benchmark data

» Leverages ILAMB code base, also runs in parallel

» Built on Python and open standards

Chlorophyll / SeaWIFS
Bias Spatial Distribution Annual & Seasonal Cycles
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SPATIAL DISTRIBUTION
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IPSLCMSA-LR

Chlorophyll
DissolvedOrganicCarbon
Nitrate

phosphate
Dimethylsulfide

Silicate

TotalAlkalinity

pco2

PH

SurfaceHeatFlux
SolarShortWaveHeatFlux
Temperature

salinity

PAR

Oxygen
MixedLayerDepth

SeasurfaceHeight

Variable Score

CMCC_CESM

IPSL-CM5A-LR

IPSL-CM5A-MR
IPSL-CM5B-LR
MPI-ESM-LR

+0
Variable Z-score

MPI-ESM-MR

+1

NorESM1-ME
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Land Model Testbed (LMT) Unified Dashboard

Show/hide side menu LT Unified Dashboard - :
containing multiple srowse. Open local json files
functions aRRRPEERR 0 00

Moveable columns

RUBISCO

Hyperdimension

selection
= Ecosystem and Carbon Cycie
Different colors for

i Tropical
Sclale/Nolrmallzhe cell Dopea model groups
values along the row or NBc5a%0) K
column direction and Usforest
color mappings pleine . -

PPing  Leaf Area Index Clickable cell linking

# Soll Carbon

to metric page

# Gross Primary Productivity

Multiple switches to
toggle features

 Global Net Ecosystem Corbon Balance ] Show/Hide cell
Hydrology Cycle values

# Evapotranspiration

Collapse and expand
Children rows

» Evaporative Fraction

+ Runoff
+ Latent Heat

Save the dashboard to a |, cenapie rent
plain html file 3 Terrestrial Water Storage Anomaly

» Tooltips: show scores when mouse hovers over the cells
» Column hiding: hides some models (columns) to focus on models of interest

» Column sorting: sort the scores along the columns/models to see the best metrics for each

R%’?o ArgonneQ oo 8 (2 aame: INCAR



https://lmt.ornl.gov/unified-dashboard

CMIP5 vs. CMIP6 Land Models

The performance of the CMIP6 suite of land models
(on right with green headings) has improved over
that of the CMIP5 suite of land models (on left with
yellow headings)

The multi-model mean (on far right with white
headings) outperforms any single model for each
suite of models

The multi-model mean CMIP6 land model is the
“best model” overall

Why did CMIP6 land models improve over their
CMIP5 progenitors?

Relative Scale
Worse Value  Better Value

Missing Data or Error

(Hoffman et al., in prep.)

bec-csmi-1
CanESM2 -
CESM1-BGC -
GFDLESM2G -
IPSL.CMSA-LR -
MIROC-ESM
MPLESM-LR -

NOrESM1-ME
UK-HadGEM2-ES -
MeanCMIPS »
MeanCMIPG »

|5 Ecosystem and Carbon Cycle
@ Biomass

@ Leaf Area Index

@ Soil Carbon

@ Gross Primary Productivity

@ Net Ecosystem Exchange
@ Ecosystem Respiration

@ Carbon Dioxide

@ Global Net Ecosystem Carbon Balance

|2 Hydrology Cycle

@ Evaporative Fraction

L @ Runoff.

L @ Latent Heat

- @ Sensible Heat
- @ Terrestrial Water Storage Anomaly

- @ Permafrost

[£ Radiation and Energy Cycle

Albedo

face Upward SW Radiation

Surface Net SW Radiation

@ Surface Upward LW Radiation

@ Surface Net LW Radiation

@ Surface Net Radiation

B Forcings

@ Surface Air Temperature.

@ Diurnal Max Temperature

@ Diurnal Min Temperature

@ Diurnal Temperature Range

* @ Precipitation

@ Surface Relative Humidity

@ Surface Downward SW Radiation

@ Surface Downward LW Radiation

|2 Relationships
- GrossPrimaryProductivity/FLUXCOM
- @ LeafAreandex/AVHRR

L @ LeafArealndex/AVH15C1

- @ LeafArealndex/MODIS

- @ Evapotranspiration/GLEAMY3.3a

@ Evapotranspiration/MODIS
@ Evapotranspiration/MOD16A2




Reasons for Land Model Improvements

ESM improvements in climate forcings (temperature, precipitation, radiation) likely partially

drove improvements exhibited by land carbon cycle models

Mean CMIPS

-2 -1 0 1 2 -30 -20 -10 0 10 20 30
Precipitation Bias [mm d-1] Incoming Radiation Bias [W m-2]

Mean CMIP6

(Hoffman et al., in prep.)
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Reasons for Land Model Improvements

Differences in bias
scores for
temperature,
precipitation, and
incoming radiation
were primarily
positive, further
indicating more
realistic climate
representation by the
fully coupled ESMs

Mean CMIPS

0.1 03 05 0.7 0.9
Temperature Bias Score [1]

Mean CMIP6

Improvement

-04 -03 -02 -01 00 01 02 03
Temperature Bias Score [1]

04 -03 -02 =01 0.0 0.1 0.2
Precipitation Bias Score [1]

0.3 -0.20 -0.15 —-0.10 —0.05 0.00 0.05 0.10 0.15 0.20
Incoming Radiation Bias Score [1]

(Hoffman et al., in prep.)
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Reasons for Land Model Improvements

® BCC-CSM2-MR GFDL-ESM4
® CanESM5 IPSL-CM6A-LR
® CESM2 MIROC-ES2L
Land States/Fluxes Surface Climate
216 improve 46 improve
0.4 1 74 degrade 0.4 1 6 degrade
. 202 same 119 same
€ | o 2% € | i
g 0.2 S {;. e 0 g 0.2 s
L] iC,.
g . . O ' G,
g 0.0 1 %% 5 X %f.. g 0.0 [V vy =
£ o .L Lk % £
—0.2 1 « ®e —0.2 1
o ® ®
—0.4 1 . —0.4 1
0.0 02 04 06 08 1.0 0.0 04 06 08 1.0

CMIP5 Overall Score

CMIP5 Overall Score

Improvement

® MPI-ESM1.2-LR
® NorESM2-LM

UKESM1-0-LL
Relationships
. 40 improve
0.4 1 s 17 degrade
o 6 same
o e Py ‘
0.2 1 ® e
. R
LA | N
0.0 .....:*
° .'
—-0.2 1
—0.4
0.0 04 06 08 1.0

CMIP5 Overall Score

(Hoffman et al., in prep.)

Across all land models, scores for most state and flux variables improved (216) or remained nearly the same (202),
although some were degraded (74). While atmospheric forcings from CMIP6 ESMs were improved over those
from CMIP5 ESMs, the largest improvements were in land model variable-to-variable relationships, suggesting
that increased land model development was also partially responsible for higher CMIP6 land model scores.
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Improvements by Land
Model

Experience indicates that
improvements in some model
aspects will lead to degradation in
some other aspects

Here, all models except
MPI-ESM1.2-LR showed more
improvements than degredations
CESM2 and NorESM2-LM had the
largest ratio of improvements to
degradations

UKESM1-0-LL exhibited the
smallest variation in scores between
CMIP5 and CMIP6

(Hoffman et al., in prep.)

Improvement

Improvement

Improvement

BCC-CSM2-MR CanESM5 CESM2
23 improve 37 improve 41 improve
10 degrade 0.4 10 degrade 0.4 6 degrade
45 same 34 same 34 same
0.2 . 2 02 . 2 02 i
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0.0 o ot aESN, . g o004 2 o0 edovus s
- S W . g o g o TR
£ £ o
-02 -0.2 -02
-04 -0.4 -0.4
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
CMIP5 Overall Score CMIP5 Overall Score CMIPS Overall Score
GFDL-ESM4 IPSL-CMBA-LR MIROC-ES2L
46 improve 44 improve 34 improve
0.4 12 degrade 0.4 13 degrade 0.4 15 degrade
3 same 24 same 32 same
0.2 T 024 T 02 °
¢ |G ;
g ¢
e Fas®™h °
0.0 2 00 t. 2 oo
£ .« £
.
-02 -0.2 - -02
—0.4 -0.4 —0.4
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
CMIP5 Overall Score CMIP5 Overall Score CMIPS Overall Score
MPI-ESML.2-LR NOrESM2-LM UKE
10 improve Lad 36 improve
0.4 14 degrade 0.4 7 degrade 0.4
57 same 38 same
0.2 2 02 £ 02
§ ° § on B
g g 'H .
8 ] 3 1%p 2 000 40’
0.0 2 oo 2 oo o g
E E
-02 -0.2 -02
-04 -0.4+ -04
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

CMIPS Overall Score

CMIP5 Overall Score
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Interactive Exploration of Multi-Model Performance

https://www.ilamb.org/CMIP5v6/historical/chart.html

© BCC-CSM2-MR
© CanEsms

° CESM2

© UKESM1-0-LL
© IPSLCMBA-LR
© MIROC-ESZL

© MPI-ESML2-LR
© NOrESM2-LM
® INM-CM5-0

Overall Score Improvement

02 04 06 08 1

CMIP5 Overall Score
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https://www.ilamb.org/CMIP5v6/historical/chart.html

Benchmark

bec-csmi-1

BCC-CSM2-MR

CanESM2

CanESM5

CESM1-8GC

CESM2

GFDL-ESM2G

GFDL-ESM4

IPSL-CM5A-LR

IPSL-CMBA-LR

MeanCMIPS

MeanCMIP§

MIROC-ESM

MIROC-ESM2L.

MPI-ESM-LR

MPI-ESM1.2-LR

NorESM1-ME

NorESM2-LM

UK-HadGEM2-ES

UKESML-0-LL.
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. 555

. 557
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6.65

6.26

9.04
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8.91

6.89

7.82

7.59

6.93

7.06

0.660

0.642

0515

0.708

1.4

0.119

9.81

9.81

0.848

0.825

0.0233

0.0601

0.730

0.379

-0.0542

0.111

0.574

0.129

0.396

-0.0111

0.725

0.386

-0.0828

0.602

0.387

5

152

231

278

159

268

1.39

163

201

111

2.00

1.60

1.20

132

138

1.49

1.20

114

0.981

0.931

127

1.99

129

113

125

131

110

116

0.484

0.479

0.435

0.447

CMIP5 and CMIP6 Land Model
Global GPP

0.830 0.955 0.628

0.817 0.941 0.626

0.388 0.437 _ 0.549

0.449

0.426

0.458

o377 [ o755 o007 Y

0.495

0.463

0.409
0.402
0.409
0.387
0.443
0389

0.436

0.418

0.468

0.466

0.403

0.435

0.710 0.948 0.589

» Most models of the same lineage improved
in various characteristics between CMIP5
and CMIP6

» The MeanCMIP5 and MeanCMIP6 models
perform the best

0.765 0.889 0.603

0.774 0.933 0.619
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(Hoffman et al., in prep.)



Spatial Distribution of Global GPP Biases
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Relationships of Global GPP with Precipitation and Temperature
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Land Model Spread in Net Ecosystem Carbon Balance

Land Source

» The spread in the net ecosystem carbon
balance increased between CMIP5 and
CMIP6

» CMIP5 at 2005:
—215 Pg to 75 Pg — 290 Pg

» CMIP6 at 2010:

B Land Source R —360 Pg to 175 Pg — 535 Pg

» However, the range from most
multi-generation models was reduced

Land Sink
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(Hoffman et al., in prep.)
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Addressing Observational Uncertainty

» Few observational datasets provide complete uncertainties

» ILAMB uses multiple datasets for most variables and allows users to
according to a rubric of uncertainty, scale mismatch, etc.

weight them
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from combining
multiple datasets

Original RMSE Score Original RMSE Score

(Collier et al., in prep.)

» Experiments with CLASS self-consistent data (Hobeichi et al., 2020) demonstrates that
while scores shift, including uncertainty rarely alters the rank ordering of models (figure)
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Beyond Static Benchmarking

» To better support model development verification, we need to incorporate metrics from
manipulative experiments

» Simulated effect sizes of nitrogen versus CO» =@ m 4.0 i
enrichment on rates of net primary production & e+ =450
(NPP) calculated (a) globally or (b) for each plant © . =50
functional type in CLM4, 4.5, and 5 3(;: = B
» Observational constraints for N response and CO» g ? e i -
response are shown with vertical and horizontal 2 ] (mnm
polygons (mean +95% confidence intervals) ; =] B
» In (b), observed (open symbols) and simulated (filled i S — | (N
symbols) effect sizes of individual PFTs for woody Toot4 18 22 o 14 18 22
NPP response to N NPP response to N

vegetation, Cs grasses, and C,4 grasses (triangles,
circles, and diamonds, respectively) (Wieder et al., 2019)

» Much more work is needed to foster land model ensemble simulations and benchmarking,
including land model testbeds, diurnal and seasonal metrics, new synthesis datasets, ...
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Conclusions and Future Research
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CMIP6 land models performed better than CMIP5 land models due to (1) improved
climate forcing from fully coupled ESMs and (2) improved process representation

Variable-to-variable relationships exhibited the largest improvements for some models
CMIP6 model results are more valuable for impact and adaptation/mitigation analysis
Land model performance depends strongly on imposed climate forcing

Incorporating observational uncertainty in ILAMB analysis increases model scores, but
rarely alters the rank ordering of models

Model improvements in mean states and fluxes may not result in reduced uncertainty or
projected model spread

Upon further examination, will improved multi-model performance result in reduced spread
in feedback sensitivities, projected land carbon storage, and future climate change?

Can ILAMB scores be used to weight contributions to multi-model means to reduce
contemporary biases, reduce projected uncertainties, or alter expected mitigation targets?
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