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Introduction

Observations of the Earth system are increasing in spatial resolution and
temporal frequency, and will grow exponentially over the next 5-10 years

With Exascale computing, simulation
output is growing even faster,
outpacing our ability to analyze,
interpret and evaluate model results

Explosive data growth and the
promise of discovery through
data-driven modeling necessitate
new methods for feature extraction,
change/anomaly detection, data
assimilation, simulation, and analysis

Frontier at Oak Ridge National Laboratory is the #1 fastest
supercomputer on the TOP500 List and the first
supercomputer to break the exaflop barrier (Nov 14, 2022).



https://top500.org/

Sampling Network Design
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Triple-Network Global Representativeness

NSF's NEON Sampling Domains

Gridded data from satellite and
airborne remote sensing, models, and
synthesis products can be combined to
design optimal sampling networks and
understand representativeness as it
evolves through time
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(Maddalena et al., in prep.)




50 Phenoregions for year
2012 (Random Colors)

250m MODIS NDVI
Every 8 days (46 images/year)
Clustered from year 2000 to present
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Earthinsights

day of year

50 Phenoregion Prototypes
(Random Colors)

(Hargrove et al., in prep.)




50 Phenoregions Persistence
and
50 Phenoregions Max Mode
(Similarity Colors)
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GSMNP: Spatial distribution of the 30 vege’ro e’
Clusters across the national park a, AT

Extracted canopy height and structure from
airborne LiDAR

10 km
I

Earthinsights (Kumar et al., in prep.)



GSMNP: 30 representative vertical structures
cluster centroids) identified

tall forests with low
understory vegetation
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Height (m)

forests with slightly lower
mean height with dense
understory vegetation

low height grasslands and
heath balds that are small
in area but distinct
landscape type

Earthinsights
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Vegetation Distribution at Barrow Environmental Observatory

Phenology Representativeness
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July 26, 2010 Representativeness
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Representativeness map for vegetation
sampling points in sites A, B, C, and D with
phenology (left) and without (right) from
WorldView2 multispectral imagery for the
year 2010 and LiDAR data

Example plant functional type (PFT)
distributions scaled up from vegetation
sampling locations

Site A Site B Site C

In situ data from field measurement activities inform the
development of wide-scale maps of vegetation distribution
through inference using remote sensing data as surrogate
variables, and relationships with environmental controls

can be extracted

Langford, Z. L., et al. (2016), Mapping Arctic Plant Functional Type
Distributions in the Barrow Environmental Observatory Using

Site D

Site A Site B

Site C

WorldView-2 and LiDAR Datasets, Remote Sens., 8(9):733,

doi:10.3390/rs8090733.

Site D
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Wet Tundra Graminoid



https://doi.org/10.3390/rs8090733

Arctic Vegetation Mapping from Multi-Sensor Fusion

Used Hyperion Multispectral and IfSAR-derived Digital Elevation Model, applied cluster analysis, and
trained a convolutional neural network (CNN) with Alaska Existing Vegetation Ecoregions (AKEVT)

—— Kougarok Watershed

Vegetation Type

Bl Rock

B Water

I Alder-Willow Shrub

I Mixed Shrub-Sedge Tussock Tundra
[ | Dryas/Lichen Dwarf Shrub Tundra
[ Sedge-Willow-Dryas Tundra

Langford, Z. L., et al. (2019), Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural
Networks, Remote Sens., 11(1):69, doi:10.3390/rs11010069.



https://doi.org/10.3390/rs11010069

Satellite Data Analytics Enables Within-Season Crop Identification

Earliest date for crop type classification
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USDA Crop Data Layer (CDL) shows similar patterns at —— Wl v " ',3'6 —
continental scale. b) Good spatial agreement is found at P 0 e® W et o (o0 pecdOgec®

three selected regions, but cluster-then-label crop maps Konduri, V. S., J. Kumar, W. W. Hargrove, F. M. Hoffman, and A. R.
lack sharpness at field boundaries due to coarser Ganguly (2020), Mapping Crops Within the Growing Season
resolution of MODIS data. Across the United States, Remote Sens. Environ., 251, 112048,

doi:10.1016/j.rse.2020.112048.



https://doi.org/10.1016/j.rse.2020.112048

Watershed-Scale Plant Communities Determined from DNN and AVIRIS NG
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Legend
@ Alder-Willow Shrub © Sedge-Willow-Dryas Tundra
© Birch-Ericaceous-Lichen Shrub Tundra @ Tussock-Lichen Tundra

@ Dryas-Lichen Dwarf Shrub Tundra © Wet Meadow Tundra

© Ericaceous Dwarf Shrub Tundra © Wet Sedge Bog-Meadow

@ Mesic Graminoid-Herb Meadow O Willow Shrub

@ Mixed Shrub-Sedge Tussock Tundra X J thlow-Bu';h Shrub

At the Watershed scale, vegetation community distribution follows topograph/c and water controls.
At a fine scale, nutrients limit the distribution of vegetation types.

Earthinsights (Konduri et al., in pre

)



Climate Change Mitigation through Climate Intervention

The increasing severity of extreme events
and wildfire is threatening utilities, built
infrastructure, and economic & national
security

Loss of life and property is motivating
consideration of climate intervention or
geoengineering

In addition to carbon dioxide removal (CDR)
through direct air capture (DAC) and other
means, interest is growing in reducing or

stabilizing Earth's surface temperature 2 | Boenaray it ool

31 ;::‘CE:’rZ?:d(LJBCi(?::r:d burial 8 | Space mirrors
Solar radiation management (SRM) is an = e
approach to partially reduce warming, and A AR

7 | Direct air CO, capture and storage (DACCS)

stratospheric aerosol intervention (SAl) by

T _ A wide variety of natural solutions and geoengineering techniques are
injecting sulfur into the lower stratosphere proposed for mitigating the effects of climate change. Adopted from

is considered the most feasible scheme Lawrence et al. (2018).




Potential Ecological Impacts of Climate Intervention

Species %E\‘

Distributions?

Wildfire?
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Although some effects of SRM with SAI on climate are known from certain

SAl scenarios, the effects of SAl on ecological systems are largely unknown.

Adopted from Zarnetske et al. (2021).

e While climate research has focused on
predicted climate effects of SRM, few
studies have investigated impacts that
SRM would have on ecological systems

e Impacts and risks posed by SRM would
vary by implementation scenario,
anthropogenic climate effects,
geographic region, and by ecosystem,
community, population, and organism

e Atransdisciplinary approach is

essential, and new modeling
paradigms are required, to represent
complex interactions across Earth
system components, scales, and
ecological systems



@'Y Geoengineering Increases the Global Land Carbon Sink

RUBISCO
Objective: To examine stratospheric aerosol intervention (SAl) impacts

on plant productivity and terrestrial biogeochemistry.

GEOENG-CTRL PgC

Approach: Analyze and compare simulation results from the
Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project - =
from 2010 to 2097 under RCP8.5 with and without SAI.  — o T —

Results/Impacts: In this scenario, SAl causes terrestrial ecosystems to —wo T
store an additional 79 Pg C globally as a result of lower ecosystem o -
respiration and diminished disturbance effects by the end of the 21%t ;E

century, yielding as much as a 4% reduction in atmospheric CO, mole  °

fraction that progressively reduces the SAl effort required to stabilize w0y °2

surface temperature. w0 a0 vk e w0z
Yang, C.-E., F. M. Hoffman, D. M. Ricciuto, S. Tilmes, L. Xia, D. G. MacMartin, B. Kravitz, J. H. Figure: The larger sink under SAl
Richter, M. Mills, and J. S. Fu (2020), Assessing Terrestrial Biogeochemical Feedbacks in a L’)‘;;%%S;dw'ﬁir;ﬂ Svitﬁéaffdﬁycﬁhigc
Strategically Geoengineered Climate, Environ. Res. Lett., doi:10.1088/1748-9326/abacf7. projected atmospheric CO, level,
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http://iopscience.iop.org/10.1088/1748-9326/abacf7

Exploring Feedbacks of SAI

A no climate change mitigation + SAIl deployment

e To fill research gaps in understanding Earth system feedbacks of

SAl on ecosystems, we are conducting a series of increasingly ol il fé
complex geoengineering simulations with DOE’s Energy Exascale g - : =
Earth System Model (E3SM) g seonsiemimpacts |2
5 12
e Simulations will mimic effects of CDR, SAI, and CDR plus SAI 2 E
I9 |Temperature l ‘z_
e Start with SSP5-3.4-0OS mid-range overshoot CO, trajectory from ty
CMIP6, which prescribes a drawdown of CO, -
e Global surface temperatures will rise by >2.5°C around 2040, above B climate change mitigation + SAI peak shaving
the 2°C threshold that may induce irreversible impacts
‘ .\oo" .
e Next, introduce SAIl to simultaneously cool the surface until 9 _é\&“’s N
drawdown is sufficient to assure < 2°C warming, called g ¥ cutemissions &
temperature “peak shaving” g %, g
=% G
5 = P, o
e To quantify feedbacks from reducing, not increasing, atmospheric = " [ "’\fg
CO,, but may not capture all the as yet unobserved processes E
> O
Time TN



Leveraging Advances in Machine Learning for Earth Sciences

Existing machine learning techniques can improve understanding of biospheric
processes and representation in Earth system models

Machine learning tasks Earth science tasks Machine learning tasks Earth science tasks

c Video prediction Short-term forecasting
a Object classification and localization Pattern classification

Dog: 0.994

|Cat: 0.982,’:

Predict future visual
representation

b Super-resolution and fusion Statistical downscaling and blending » &)

e ¢ Xq)
e |
f;;u?( :azm;ﬁazs G{ﬁﬁﬂd el i i il W o , \VT/‘ d Language translation Dynamic time series modelling
A biEhah i wes T/ Er liebte zu essen . Real vs predicted humidity values

i REE oo \T//” Sotmax i H H W H N D
bz, - \| »,jk Decoder # A 'r/,\
7 : * + + 4 8 AN LN N
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Figure 2 in Reichstein et al. (2019)



Machine Learning for Understanding Biospheric Processes

Widening adoption of deep neural networks and growth of climate data are fueling interest
in AlI/ML for use in weather and climate and Earth system models
ML potential is high for improving predictability when (1) sufficient data are available for

process representations and (2) process representations are computationally expensive
Example methods for improving ELM capabilities \‘°""”4/»

ON Ty,
by exploring ML and information theory é;,““ K
approaches: (SSHEDS }

o Soil organic carbon & radiocarbon <>~
o Wildfire

o Methane emissions

o Ecohydrology

All of these applications involve
unresolved, subgrid-scale e
processes that strongly influence
results at the largest scales
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Al-Constrained Ecohydrology for LANL, Porn Sate sl
Improving Earth System Predictions Contact: Forrest M. Hoffmar

Project to prototype machine learning-based parameterizations
for stomatal conductance and photosynthesis
o Photosynthesis is a computationally expensive part of land
models and leaf-level flux and phenology data are available
o Use combinations of leaf-level and plant hydrodynamics data
to build ML models of C3, C4, and CAM vegetation
o Investigate ML approaches for scaling to canopies and
watersheds
o Prototype hybrid ML-/process-based components within the
E3SM Land Model (ELM)

o Future efforts:

» Conduct regional and global simulations to benchmark different combinations
of process-based and ML modules
» Explore approaches for building hybrid modeling interfaces within ELM

@ ENERGY ZUAI4ESP




Hybrid ML/Process-based Modeling for Terrestrial Modeling

Individual processes can be T Doy B P
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Hybrid Modeling of Photosynthesis and Ecohydrology

e Significant leaf-level data may be used to @ sl berry A7 = 0726 o ey 52— 067
train ML parameterizations to improve e
accuracy and computational performance ™ :

e Estimated stomatal conductance vs. ors- T

measured stomatal conductance for (a)
Ball-Berry, (b) Medlyn, (c) Random forest (with
Medlyn inputs), and (d) Random forest with

all inputs from Lin et al. (2015) T 00 o5 1t s - s ors 10 13
e Inputsto the Medlyn parameterization are (Cl)_zsi Random Forest (Medlyn), R? = 0.810 (01|_)257 Random Forest, R = 0.981 o

leaf-level CO,, photosynthesis, and vapor o

pressure deficit g . N -';.

Q.

e Random forest trained on these three inputs
(c) performs slightly better than Medlyn 5
e Random forest trained on more variables (d) 0z TS
achieves an R? of 0.98 oo BT

000 025 050 075 1.00 125 000 025 050 075 100 125

(Massoud, Collier, et al. in prep) Cond cond
e

Cond_rf




https://aidesp.org/

" AI4ESP

https://aidesp.slack.com/

Artificial Intelligence for Earth System
Predictability

A multi-lab initiative working with the Earth and Environmental Systems Science Division (EESSD) of the
Office of Biological and Environmental Research (BER) to develop a new paradigm for Earth system
predictability focused on enabling artificial intelligence across field, lab, modeling, and analysis activities.

White papers were solicited for development Earth System Predictability Sessions Workshop Report o ® -1
and application of Al methods in areas  Atmospheric Modeling e Posted on
relevant to EESSD research with an emphasis ® Land Modeling . aidesp.org rouo ot
on quantifying and improving Earth system e Human Systems & Dynamics e Executive on o ety
predictability, particularly related to the e Hydrology Summary | T
! i e Watershed Science @m‘ Jay Hnilo Jeff Stehr ~Los Alamos
integrative water cycle and extreme events. e Ecohydrology e Longsummary ok Jonifo Arigo  Renw Joeph onmat
e Aerosols & Clouds e Earth science Y ins oo sobvalorio ik operbr N
H ifiri, Steven Lee (ASCR) Randall Loviolette (ASCR)
How can DOE directly Ic_everage artlflcm{ e Climate Variability & Extremes chapters
mtelllg_ence (Al) t(_) engineer a substc_mtlal e Coastal Dynamics, Oceans & Ice e Computational A0 i
(paradigm-changing) improvement in Cross-Cut Sessions science chapters T Wi idoon  forsHlien ST
Earth System Predictability? e Data Acquisition e bt sy
) ) e Neural Networks AMS Special ot of ot of
156 white papers were received and read to e Surrogate models and emulators Collection i Voo Tino oo
plan the organization of the AI4ESP e Knowledge-Informed Machine Learning e Open submissions
Workshop on Oct 25-Dec 3, 2021 e Hybrid Modeling for new Al for the AQux oo e
e Explainable/Interpretable/Trustworthy Al Earth S W
e Knowledge Discovery & Statistical Learning +
e Al Architectures and Co-design journa


https://ai4esp.org/
https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/
https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/

AI4ESP Workshop Highlights

Scientific Understanding and Earth System Predictions Across Scales

Molecular< Global
Spatial Scale

Theory
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Observations

Modeling

© Obsersvations

Input Output State === Model with data assimilation
Distributions Distributions © = = Model without data assimilation
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Simulation| 1
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Uncertainty Quantification Software Ecosystem Data Infrastructure Data Assimilation

i

EESA22:032




AI4ESP Workshop Highlights

Overview of priorities emerging from the AI4ESP workshop across 3 key themes.
These priorities will help address major challenges for Earth system predictability

Earth Science Priorities

* New observations

* Al-ready data products

+ Data-driven and hybrid models
+ Analytical approaches

+ Uncertainty quantification, model
parametrization & calibration

To Tackle Challenges

* Significant data gaps

+ Scaling and heterogeneity

* Extreme events

+ Representation of human activities

* Knowledge discovery

+ Accurate high-resolution predictions with
low bias, uncertainty

* Providing actionable, timely information for
decision making

Computational Science Priorities

* Hybrid models

« Fundamental math and
algorithms

* Interpretable, trustworthy Al
* Al-enabled data acquisition
- Data, software, hardware infrastructure

To Tackle Challenges

* Physically consistent predictions for
data-driven models

« Computational costs of process models
« Sparse data, extreme values

* Identifying causality

* Interpretable, trustworthy predictions

« Data discovery, access, synthesis

* Model development and comparison

Programmatic and Cultural Priorities

» Al research centers ﬁ

* Workforce development

+ Codesign infrastructure

« Common standards, benchmarks

* Seed projects, integrate Al into programs
+ Al ethics and policies

To Tackle Challenges

- Interdisciplinary scientific research

* Diverse organizational missions

* Personnel lack training in Al/ML

* Using data, communicating across
research domains, organizations

+ Data bias, model fairness, explainability
of predictions

EESA22-031



AI4ESP Workshop Highlights
)

Idealized Roadmap for Success vj A I 4 E S P

Long Term (<10 years) % ___—-—/
» Improved Earth system /

understanding and predictions
* Supporting stakeholder needs == Mid Term (<5 years)
at relevant scales for decision making K| researel centers

* Measurable improvement in Earth
system models with better
representation of human activities

* New Al techniques tailored for
Earth science applications

« Established interdisciplinary workforce

* Open science culture with data sharing
using standards, co-developed models

R

Near Term (<2 years)
* Open benchmark datasets

+ Al-enabled observations and data
products based on gaps

+ Seed efforts to demonstrate
potential of Al in existing programs
and modeling frameworks

« Cross-disciplinary collaborations
to initiate activities

EESA22-033




Computational Earth Sciences Group Members
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Gaurab KC

Located in the ORNL Climate Change

Staff and Postdoctoral Scholars Science Institute (CCSI) in

Building 4500N, F Corridor
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https://top500.org/

University of Tennessee, Knoxville

»

l The Bredesen Center

The Bredesen Center for Interdisciplinary Research
and Graduate Education unites resources and
capabilities from the University of Tennessee and
Oak Ridge National Laboratory to promote advanced
research and to provide innovative solutions to global
challenges in energy, engineering, and computation
under the umbrella of the UT-Oak Ridge Innovation
Institute (UT-ORII).

Seeking to create opportunities for exceptional students to engage in
interdisciplinary research and education, the Bredesen Center offers a doctoral

degree in the following areas:

« Data Science and Engineering (DSE)
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