

Forrest M. Hoffman^{†‡}, James T. Randerson[‡], Peter E. Thornton[†], and Keith Lindsay* [†]Oak Ridge National Laboratory, [‡]University of California - Irvine, and *National Center for Atmospheric Research

Introduction

Rapidly increasing atmospheric carbon dioxide (CO₂) concentrations are altering Earth's climate. The anthropogenic perturbation of the global carbon cycle is expected to induce feedbacks on global climate and future CO₂ concentrations; however, these feedbacks are poorly constrained. In order to reduce the range of uncertainty in climate predictions, model representation of feedbacks must be improved through comparisons with contemporary observations. The International Land Model Benchmarking (ILAMB) Project is developing model evaluation benchmarks based on best-available observational data sets that are accepted by the larger international research community. In this work-in-progress, we apply observational estimates of atmospheric CO_2 and ocean carbon fluxes to analyze the evolution of carbon cycle biases in emissions-forced model results from the Fifth Coupled Model Intercomparison Project (CMIP5).

		ESM	ESM	ESM	ESM	ESM	ESM	ESM	1%
Model (CSM, ESM)	Country	5.1	storical 5.2	8CP8.5 F 5.3	-ixClim1 5.4-1	FixClim2 5.4-2	Fdbk1 5.5-1	Fdbk2 5.5-2	6.1
ACCESS1.0	Australia	×	×	×	×	×	×	×	1
BCC-CSM1.1	China	1	1	1	1	1	1	1	1
CanESM2	Canada	1	3	3	1	1	1	1	1
CESM1	U.S.	×	×	×	×	×	×	×	×
SCNRM-CM5	France	×	×	×	×	×	×	×	1
SCSIRO-Mk3.6	Australia	×	×	×	×	×	×	×	1
SFGOALS-G2	China	×	×	×	×	×	×	×	1
SGFDL-CM3	U.S.	×	×	×	×	×	×	×	1
GFDL-ESM2G	U.S.	1	1	×	×	×	×	×	1
GFDL-ESM2M	U.S.	1	1	1	1	×	1	×	1
HadGEM2-ES	_U.K.	1	1	1	×	1	1	1	1
INM-CM4	Russia	1	1	1	×	×	×	×	1
IPSL-CM5A-LR	France	1	1	1	1	1	1	1	1
SIPSL-CM5A-MR	France	×	×	×	×	×	×	×	1
MIROC-ESM	Japan	1	1	1	X	1	×	×	1
SMIROC5	Japan	×	X	×	X	X	×	×	1
	Germany	×	×	X		×	1	×	
	Germany	×	×	×	×	×	×	×	
NorESM1-M	Japan Norway	×	×	×	×	×	×	×	1
						As o	of 25 Fe	bruary	201
Earth	Svstem		ES	M Histo	rical	ESM F	RCP 8	.5	
Мс	odel	Country	\mathbf{CO}_2	$FGCO_2$	NBP	\mathbf{CO}_2 FG	CO_2	NBP	
→ BCC-0	CSM1.1	China	1	1	x	1	1	x	
	ESM2	Canada	2	2†	2	2 4	2†	2	
			5	U 1	5			5	
CE		U.S.			-				
GFDL-	ESM2G	U.S.	×	×	1	×	×	×	
GFDL-	ESM2M	U.S.	×	×	1	×	X	1	
HadGE	EM2-ES	U.K.	×	1	×	×	1	×	
→ INM·	-CM4	Russia	1†	1	1	1†	1	1	
IPSL-C	M5A-LR	France	×	1	1	×	1	1	
	C-ESM	Japan	1	1	1	1	1	1	
· · · · · · · · · · · · · · · · · · ·		Japan	· · · · ·				-		

5-y averages relative to 2006-2010

Figure 4: The R^2 of multi-model bias structure relative to the model CO_2 estimates for 2008. Five year average atmospheric CO_2 projections are compared to the 2006–2010 average. For N = 8, an $R^2 \approx 0.5$ is significant to the p < 0.05 level.

Figure 5: Ocean carbon uptake from CMIP5 models for the emissions-forced historical simulation (left) and the emissions-forced RCP 8.5 simulation (right).

Figure 6: Ocean carbon uptake (left) and cumulative ocean carbon uptake (right) from CMIP5 models for the emissions-forced historical and RCP 8.5 simulation.

Figure 9: Carbon accumulation through 1994 for the atmosphere, ocean, and land (computed as the difference) from CMIP5 models for the emissions-forced historical simulation. In the lower-right panel, the ocean uptake has been divided by the atmospheric uptake in order to remove the atmospheric CO_2 bias.

Table 2: Projected anthropogenic CO₂ budget for the emissions-forced historical simulation for 1980–1999.

Model	Realizatior	Fossil n (Pg C)	Atmosphere (Pg C)	Ocean (Pg C)	−F−A−O (Pg C)	Land (Pg C)
Sabine et a	al. (2004)	117 ± 5	-65 ± 1	-37 ± 8	-15 ± 9	-39 ± 18
BCC-CSM1.1	r1i1p1	117	-69	-37	-11	(-10)
	r1i1p1	117	-76	-33	-7	-10
CanESMO	r2i1p1	117	-74	-35	-8	-9
Ganeoniz	r3i1p1	117	-80	-36	-1	-5
		117	-77 ± 3 -	-34.5 ± 1.5	-4.5 ± 3.5	-7.5 ± 2.5
CESM1	r1i1p1	117	-82	-41	6	6
HadGEM2-ES	r1i1p1	117	-74	-43	0	(0)
INM-CM4	r1i1p1	117	-70	-17	-30	-12
MIROC-ESM	r1i1p1	117	-74	-40	-3	-4

Table 3: Estimated ocean inventory and uptake rate of anthropogenic CO_2 in 2008 for the emissions-forced historical (1850–

Carbon in CMIP5 Emissions-Forced Simulations

Figure 1: Atmospheric CO_2 mole fraction from CMIP5 models for the emissions-forced historical.

Figure 7: Land carbon uptake from CMIP5 models for the emissions-forced historical simulation (left) and the emissions-forced RCP 8.5 simulation (right).

Figure 8: Land carbon uptake (left) and cumulative land carbon uptake (right) from CMIP5 models for the emissions-forced historical and RCP 8.5 simulation.

2005) and emissions-forced RCP 8.5 (2006–2008) simulations.

Model	Realization	Ocean Inventory (Pg C)	Ocean Uptake (Pg C y ⁻¹)
Khatiwala	et al. (2009)	140 ± 25	2.3 ± 0.6
BCC-CSM1.1	r1i1p1	122.0	2.32
	r1i1p1	98.4	2.40
CanESM2	r2i1p1	96.2	2.45
	r3i1p1	99.2	2.25
	Ensemble Mean	97.9	2.37
CESM1	r1i1p1	131.1	2.70
HadGEM2-ES*	r1i1p1	152.1	2.45
INM-CM4	r1i1p1	55.0	1.15
MIROC-ESM	r1i1p1	133.5	2.62

Table 4: Estimated atmosphere, ocean, and land uptake rates of anthropogenic CO_2 for the emissions-forced historical (1850–2005) and emissions-forced RCP 8.5 (2006–2008) simulations. For models, land values in parentheses are computed as differences; other land accumulation values come from model results. The units for all carbon accumulation values are Pg C y⁻¹.

			1980s			1990s		2	2000–200	6
Model		Atmos	Ocean	Land	Atmos	Ocean	Land	Atmos	Ocean	Land
Khatiwala et al	. (2009)		1.8	0.3		2.0	1.1		2.3	1.1
			(1.3-2.3) ((-0.3-0.8)		(1.4-2.6)	(0.5-1.8)		(1.7–2.9)	(0.4–1.8)
IPCC AF	{ 4		1.8	0.3		2.2	1.0		2.2	1.3
			(1.0–2.6) ((-0.6-1.2)		(1.8–2.6)	(0.4–1.6)		(1.8–2.6)	(0.7–1.9)
BCC-CSM1.1	r1i1p1	3.41	1.79	(0.26)	3.49	1.96	(0.77)	4.70	2.27	(0.22)
	r1i1p1	3.95	1.60	-0.06	3.62	1.71	1.07	5.48	2.21	0.00
ConESMO	r2i1p1	3.93	1.75	-0.10	3.50	1.72	1.04	5.63	2.04	0.10
Ganesiviz	r3i1p1	3.08	1.61	0.61	4.90	1.98	-0.11	4.92	2.13	0.38
	Mean	3.65	1.65	0.15	4.01	1.80	0.67	5.34	2.13	0.16
CESM1	r1i1p1	3.98	1.90	-0.46	4.20	2.19	-0.13	4.24	2.34	0.29
HadGEM2-ES	r1i1p1	3.85	1.99	(-0.39)	3.54	2.31	(0.37)	4.47	2.31	(0.40)
INM-CM4	r1i1p1	3.47	0.78	0.38	3.58	0.90	0.81	4.77	1.04	-0.12
MIROC-ESM	r1i1p1	3.38	1.73	0.14	4.04	2.25	0.30	3.21	2.05	1.80

Year

Figure 2: Atmospheric CO₂ mole fraction from CMIP5 models for the emissions-forced historical and RCP 8.5 simulations combined.

Figure 3: Future vs. contemporary atmospheric CO₂ mole fraction from CMIP5 models for the emissions-forced RCP 8.5 simulation. **Comparisons with Contemporary Observations**

Table 1: Projected anthropogenic CO₂ budget for the emissions-forced historical simulation for 1850–1994.

Model F	Realization	Fossil (Pg C)	Atmosphere (Pg C)	Ocean (Pg C)	−F−A−O (Pg C)	Land (Pg C)
Sabine et al. Waugh et al. Khatiwala et a	(2004) [†] (2006) I. (2009) [‡]	244 ± 20	-165 ± 4	-118 ± 19 -(94-121) -114 ± 22	39 ± 28	
BCC-CSM1.1	r1i1p1	240	-163	-92	15	(15)
	r1i1p1	240	-159	-70	-11	-23
CanESM2	r2i1p1	240	-157	-69	-14	-28
	r3i1p1	240	-167	-70	-3	-16
		240	-162 ± 5	-69.5 ± 0.5	-8.5 ± 3	-22 ± 6
CESM1	r1i1p1	240	-194	-99	53	60
HadGEM2-ES*	r1i1p1	240	-209	-119	88	(89)
INM-CM4	r1i1p1	240	-157	-41	-42	-54
MIROC-ESM	r1i1p1	240	-188	-103	51	48

Sabine et al. (2004) estimates are for 1800–1994.
[‡]Khatiwala et al. (2009) estimates are for 1765–1994.
*HadGEM2-ES simulation begins in 1860.

References

- S. Khatiwala, F. Primeau, and T. Hall. Reconstruction of the history of anthropogenic CO₂ concentrations in the ocean. *Nature*, 462(7271):346–349, Nov. 2009. doi:10.1038/nature08526.
- C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T. Ono, and A. F. Rios. The oceanic sink for anthropogenic CO₂. *Science*, 305(5682):367–371, July 2004. doi:10.1126/science.1097403.
- D. W. Waugh, T. M. Hall, B. I. McNeil, R. Key, and R. J. Matear. Anthropogenic CO₂ in the oceans estimated using transit time distributions. *Tellus B*, 58 (5):376–389, Nov. 2006. doi:10.1111/j.1600-0889.2006.00222.x.

Acknowledgment

Research sponsored by the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (OBER) within the U.S. Department of Energy's Office of Science (SC). This research used resources of the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-000R22725.