Using the Concept of Ecoregions for Large Area Crop Mapping

Venkata Shashank Konduri^{1,2}, Jitendra Kumar², William W. Hargrove³ Forrest M. Hoffman² and Auroop Ganguly¹,

 $^1 \text{Northeastern}$ University, $^2 \text{Oak}$ Ridge National Laboratory; and $^3 \text{USDA}$ Forest Service

April 8, 2019

- The United States is a major food producer in the world accounting for about 30% of the world grain exports and crop cultivation accounts for nearly 80% of all water use.
- The Cropland Data Layer (CDL) provided by USDA for CONUS based on extensive ground reference data collected during the mapping year.
- Field data collection for CDL extremely time consuming, expensive and labor-intensive. It is not available for access to the general public.
- The georeferenced raster map is not released until the beginning of the subsequent calendar year for market sensitivity reasons.

Crops exhibit wide range of variability in phenology

Spatial Variability in Phenology

One of the challenges in remote sensing-based large area crop mapping is the variability across ecological zones, which can result in different timing of crop phenological development.

1. Develop a generalized phenology based classification approach to map major crops across the "Extended Corn Belt" region.

- 2. Perform the classification at the scale of ecoregions.
- 3. Evaluate model performance using error metrics like Producer Accuracy, User Accuracy, Error Matrix and Percent Deviation.

Remotely Sensed Data

Smoothed and gap-filled **MODIS NDVI** data for the entire CONUS for the period 2000-2016.

(J. Spruce, G. Gasser, and W. Hargrove. MODIS NDVI data, smoothed and gap-filled, for the Conterminous US: 2000-2015)

Reference Data

The study was performed for the cropland extent for the CONUS defined by the **USDA Cropland Data Layer (CDL)** for the years 2008-2015 at 30m resolution.

Classification (Step 1) - Creation of Phenoclusters

Spatio-Temporal NDVI data

Dec 20-27, 2016 46 NDVI (ndvi1,, ndvi1,,,, ndvi1,,,) image dates (ndvi_{2.8}, ndvi_{2.14},, ndvi_{2.44}) become BCD A axes of the data space 2 (ndvi43, ndvi434,, ndvi446) 3 4 Jan 9-16, 2000 (ndvi_{3.4}, ndvi_{3.14},, ndvi_{3.46}) 231m x 231m grid Jan 1-8, 2000 46 NDVI images/year x 16 years Phenocluster maps for different years Multivariate Spatio-Temporal Clustering Reassemble map cells in geographic A32002 space and C12000 A12003 A1_2004 color them A2,000 C2,00 as per their 2016 cluster A4₂₀₀₆ C4₂₀₀₆ C1_2006 D32002 2001 C1_2008 B42001 2000

46 dimensional data space

Classification (Step 2) - Assigning Crop Labels to Phenoclusters

Find Goodness-of-fit (GOF) for every cluster with each crop

- ► The model has been tested each year from 2008-2015.
- For each individual state, selected crop progress stages from USDA weekly reports were processed to measure interannual similarity (Zhong et al., 2016).

State	Mapping Year										
	2008	2009	2010	2011	2012	2013	2014	2015			
lowa	2013	2014	2011	2010	2010	2008	2011	2011			
Indiana	2013	2011	2012	2008	2010	2008	2013	2013			

Table: Selecting the training year for every state based on phenological similarity

Table: Environmental variables used for ecoregion delineation. These data are in the form of ${\sim}1$ km raster grids.

Variable Description	Units	Source
Bioclimatic Variables		
Annual mean temperature	°C	Fick and Hijmans (2017)
Mean diurnal range	°C	Fick and Hijmans (2017)
Isothermality	_	Fick and Hijmans (2017)
Temperature seasonality	°C	Fick and Hijmans (2017)
Mean temperature of warmest quarter	°C	Fick and Hijmans (2017)
Mean temperature of coldest quarter	°C	Fick and Hijmans (2017)
Annual precipitation	mm	Fick and Hijmans (2017)
Precipitation seasonality	mm	Fick and Hijmans (2017)
Precipitation during the wettest quarter	mm	Fick and Hijmans (2017)
Precipitation during the driest quarter	mm	Fick and Hijmans (2017)
Edaphic Variables		
Available water holding capacity of soil	mm	Global Soil Data Task Group (2000); Saxon et al. (2005)
Bulk density of soil	g/cm^3	Global Soil Data Task Group (2000); Saxon et al. (2005)
Soil carbon density	g/m^2	Global Soil Data Task Group (2000); Saxon et al. (2005)
Total nitrogen density	g/m^2	Global Soil Data Task Group (2000); Saxon et al. (2005)
Topographic Variables		
Compound topographic index (relative wetness)	-	Saxon et al. (2005)

Dividing CONUS into 500 ecoregions

- Corn Soybeans
- Other Hay with most other crops
- ► Winter Wheat and Fallow

		Crop Data Layer							User	
		Corn	Rice	Sorghum	Soybeans	WinWht	Alfalfa	Other Hay	Fallow	Accuracy (%)
Reclassed Map	Corn	208	0	5	135	11	15	7	8	51
	Rice	0	0	0	0	0	0	0	0	20
	Sorghum	1	0	5	0	2	0	0	3	35
	Soybeans	87	5	3	145	6	5	8	10	47
	WinWht	12	0	15	4	73	2	3	22	49
	Alfalfa	4	0	0	2	2	10	3	1	37
	Other Hay	7	0	0	9	3	3	25	3	42
	Fallow	2	1	2	3	12	0	2	12	30
Producer Accuracy (%)		62	5	15	46	63	26	46	18	

Table: Error Matrix for CONUS (2015)

Winter Wheat and Fallow

- Similar phenologies for certain crops.
- Lower CDL accuracies for lesser grown crops

Crop type	Area (x 1000 ha)	Producer Acc (%)	User Acc (%)	
Winter Wheat	399	94.4	94.5	
Corn	179	93.2	93.6	
Soybeans	144	92.9	92.9	
Fallow	124	87.5	87.8	
Sorghum	124	89.3	89.3	
Other Hay/Non Alfalfa	50	56.1	90.4	
Double Crop WinWht/Soy	35	85.9	85.3	
Alfalfa	22	85.9	91.2	
Cotton	0.82	62.7	87	
Potatoes	0.13	75.7	95.4	

Table: Accuracy table for the 2013 CDL for Kansas (Downloaded from the USDA CDL website)

Mixed pixel effect

Corn Acreage aggregated to county

Soybeans Acreage aggregated to county

Wheat Acreage aggregated to county

- Land surface phenology can be used to identify and map crops at continental (to global) scale.
- While accuracy are high for dominant crops, they tend to be be lower for less dominant crops (in part due to mixed pixel effect and limited training data).
- Use of ecoregions helps to reduce crop misclassification by addressing spatial variability and allowing for development of more specific models.
- Interannual variability in phenology can have a significant impact on the accuracies.
- When aggregated to the county scales, there is an over prediction in acreages in the dominant crop growing regions and an under prediction in the less dominant areas to the tune of about 10%.

- Develop a system for continuous tracking and mapping of agricultural ecosystem using near real time remote sensing (similar to USDA Forest Service ForWarn).
- Estimate crop yield based on phenological trajectory/completion metric through the season.

This research was sponsored by the U.S. Department of Agriculture Forest Service, Eastern Forest Environmental Threat Assessment Center (EFETAC) and the U.S. Department of Energy Biological and Environmental Research (BER) program. This research used resources of the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

- S. E. Fick and R. J. Hijmans. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12):4302–4315, 2017. ISSN 1097-0088. doi: 10.1002/joc.5086. URL http://dx.doi.org/10.1002/joc.5086.
- Global Soil Data Task Group. Global gridded surfaces of selected soil characteristics (igbp-dis). [global gridded surfaces of selected soil characteristics (international geosphere-biosphere programme data and information system)]., 2000. URL http://dx.doi.org/10.3334/ORNLDAAC/569.
- E. Saxon, B. Baker, W. Hargrove, F. Hoffman, and C. Zganjar. Mapping environments at risk under different global climate change scenarios. 8(1):53–60, Jan. 2005. doi: 10.1111/j.1461-0248.2004.00694.x.
- L. Zhong, L. Yu, X. Li, L. Hu, and P. Gong. Rapid corn and soybean mapping in us corn belt and neighboring areas. Scientific reports, 6:36240, 2016.