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Outline

Introduction: Delineation of ecoregions

Computational challenges: Spatio-temporal scales of data and data
set size

Design: Parallel k-means algorithm and enhancements

Performance: Parallel performance and scaling

Application: Forest threat detection using MODIS NDVI products
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Introduction

Ecoregions are geographical regions of generally similar combination
of ecologically relevant conditions like temperature, precipitation
and soil characteristics.

Understanding and delineation of ecoregions are useful for predicting
suitable species range, stratification of ecological samples, and to
help prioritize habitat preservation and remediation efforts.

In the case of threatened or endangered species, a well-executed
ecoregion classification can be used to identify and locate the extent
of suitable habitat for the purposes of preserving or improving it.

Large amount of data sets are available from satelite, airborne and
ground based remote sensing; GCM model outputs

Data mining tools can be used to extract knowledge from these
data sets
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Overview of the Forest Incidence Recognition and State Tracking (FIRST) System
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Normalized Difference Vegetation Index (NDVI)

NDVI exploits the strong differences in plant reflectance between
red and near-infrared wavelengths to provide a measure of
“greenness” from remote sensing measurements.

NDVI =
(σnir − σred)

(σnir + σred)
(1)

These spectral reflectances are ratios of reflected over incoming
radiation, σ = Ir/Ii , hence they take on values between 0.0 and 1.0.
As a result, NDVI varies between −1.0 and +1.0.

Dense vegetation cover is 0.3–0.8, soils are about 0.1–0.2, surface
water is near 0.0, and clouds and snow are negative.
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Data Mining for Change Detection

Changes in forest states are captured by the remote sensing.

Difficult to use map arithmetic, since the appropriate choice of
parameters may vary by region and/or type of forest disturbance.

An automated, unsupervised change detection system is desired.

We apply geospatiotemporal data mining techniques to perform
unsupervised classification

Further analysis of clustering outputs for change detection

Identify unexpected changes in forest states.
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k-means cluster algorithm

START

Read initial seeds
and data

Calculate distance 

Assign cluster

If converged

STOP

Recalculate centroid

YES

NO

Serial algorithm

Requires enough memory to hold
all the data

Not adequate for the large data
sets of our interest
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Clustering the MODIS NDVI data

Data from MODIS: Continental US at 250m resolutions, 16 days

The ˜22B NDVI values in the data set are arranged as annual NDVI
traces of 22 values, for each grid cell (˜146.4M records) in each of
the seven yearly maps (2003-2009),

The entire set of NDVI traces for all years and map cells is combined
into one 84 GB (single precision binary) data set of 22-dimensional
“observation” vectors that are analyzed via the k-means algorithm.

After applying k-means, cluster assignments are mapped back to the
map cell and year from which each observation came, yielding seven
maps in which each cell is classified into one of k phenoclasses

The phenoclasses form a “dictionary” of representative or prototype
annual NDVI traces (the cluster centroids) derived from the full
spatiotemporal extent of the observations in the input data set.

Kumar, Mills, Hoffman, and Hargrove Parallel k-Means Clustering for Large Data Sets



Introduction Computational challenges Design Performance Application Conclusions

Parallel k-means cluster algorithm

START

Initialize MPI processes

P-0 P-1 P-N

START

Read data
MPI_Fileread

Read data
MPI_Fileread

Read data
MPI_Fileread

Read seedfile

Broadcast to all Receive seeds Receive seeds

Perform k-means
Clustering step

Perform k-means
Clustering step

Perform k-means
Clustering step

Synchronize MPI_Allreduce

STOP

If convergence If convergence If convergence

No

Yes Yes
Yes

No No

Masterless parallel algorithm

Data partitioned acrosss
distributed memory processors

Triangular inequality based
acceleration

Warping to handle any null
clusters

Suitable for very large data sets
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Enhancements to k-means algorithm

Triangular inequality based

acceleration (Phillips 2002):

d(i , j) ≤ d(p, i) + d(p, j)
d(i , j) − d(p, i) ≤ d(p, j)
if d(i , j) ≥ 2d(p, i) :

d(p, j) ≥ d(p, i)
without calculating the distance

d(p, j)

Calculate inter-centroidal
distances

Sort the inter-centroidal distances

Warping to handle null clusters:

Avoid empty clusters

Move “worst of the worst” point
to the empty cluster

Update cluster sizes and
recalculate centroid

Phillips, S. J. (2002) “Acceleration of K-Means and Related

Clustering Algorithms”, ALENEX ’02: Revised Papers from

the 4th International Workshop on Algorithm Engineering

and Experiments, Springer-Verlag, 2002, 166-177
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Data sets and resources used

Summary of data sets used

Dataset No. of dimensions No. of records Dataset size
fullUS 25 7,801,710 745 MB

AmeriFlux 30 7,856,224 900 MB
Phenology 22 1,024,767,667 84 GB

Jaguar Cray XT5 (ORNL):

18,688 compute nodes

Dual hex-core AMD Opteron 2435 (istanbul) processors
2.6GHz
16GB DDR2-800 memory

Seastar 2+ router

Parallel lustre filesystem

Peak performance: 2.3 petaflops/s
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Effect of acceleration: Scaling with increasing k and n: No. of distance calculations
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Effect of acceleration: Scaling with increasing k and n: CPU time
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Strong scaling test: Phenology data set
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CrayPat summary: Phenology data set, 1000 clusters

Num. procs = 256 Num. procs = 512

Num. procs = 1024
Kumar, Mills, Hoffman, and Hargrove Parallel k-Means Clustering for Large Data Sets
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Performance results: Phenology data set, 1000 clusters
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Performance results: Phenology data set, 1000 clusters, 1024 procs
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50 Phenoregions for Year 2009 (Clustering 2003-2009)
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Transition distance map (2003-2008)
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Mountain Pine Beetle in Colorado for (2008 − 2003)
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Conclusions

Parallel k-means cluster analysis tool enables the analysis of very
large earth sciences data dets

Enhancements for improved performance of the algorithm

Scalable design for large data sets

Good parallel performance and scaling achieved on state-of-the-art
supercomputers

Promising results for geospatiotemporal cluster analysis of
phenology from MODIS NDVI

Successfully applied for forest threat detection; global climate model
data comparison (CMIP)

Kumar, Mills, Hoffman, and Hargrove Parallel k-Means Clustering for Large Data Sets
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Future Work

Two-phase I/O for improved parallel I/O performance

Improved load balancing: block cyclic distribution of data, dynamic
load balance

Support for fuzzy and hierarchical clustering

Cluster analysis of updated NDVI data sets: 2000-2010(part), every
8 days (200 GB data)

Cluster analysis for comparison of global climate model results for
CMIP5

Kumar, Mills, Hoffman, and Hargrove Parallel k-Means Clustering for Large Data Sets
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Thank you!

Questions?

Mills, Hoffman, Kumar and Hargrove: “Cluster Analysis-Based

Approaches for Geospatiotemporal Data Mining of Massive Data

Sets for Identification of Forest Threats ”, Session 21b, 2:30PM
1

1
Image source: http://blogs.denverpost.com/thespot/files/2010/02/barkbeetle.jpg
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