Classification and Delineation of Large Earth Science Data

Jitendra Kumar^{α}, Forrest M. Hoffman^{α}, William W. Hargrove^{β}

Climate Data Analytics • Identification of ecoregions or climate zones is important for defining and studying climatic regimes, predicting suitable species ranges, and delineating environmental and ecological sampling domains

- Model diagnostics and intercomparison
- Knowledge discovery from model and observation data
- Increasing volumes of climate data calls for improved data analytics algorithms and computational tools

Parallel *k*-means Clustering

- We have developed a highly scalable parallel *k*-means clustering algorithm tool (Figure 1)

Figure 3: *Parallel scaling (k=1000, NDVI 2000–2011)*

Forest Threat Detection

- USDA Forest Service, NASA, DOE ORNL, and USGS developed an early warning system for forest threats
- The *ForWarn* system uses phenology derived from NDVI observations from MODIS every 8 days (Figure 7)

Figure 7: \triangle Integreated NDVI disturbance map

$^{\alpha}$ Oak Ridge National Laboratory, $^{\beta}$ USDA Forest Service

• New acceleration schemes improve the computational efficiency of the clustering algorithm (Figure 2)

Figure 1: The parallel k-means algorithm

Figure 4: Parallel I/O performance and optimization

Geo-spatial Analysis and Visualization

- We have built an Open Source tool chain for analysis and visualization (Figures 5, 6)
- This framework was designed and optimized to utilize high performance computing resources for analysis of large Earth Science data sets

Next Generation Ecosystem **Experiments (NGEE)** – Arctic

- NGEE is a model-inspired field measurement program focused on the Arctic and other critical regions (Figure 8)
- Quantitative methodology developed for stratifying domains and determining representativeness of sites (Figure 9)

Figure 8: *Ecoregions and Representative Sites*

Figure 9: Site and Network Representativeness

Scaling and Optimization

- We have optimized the Multivariate Spatio-Temporal Clustering (MSTC) tool for excellent parallel performance on Titan Cray XK6 at ORNL (Figure 3)
- Two phase (read + scatter) parallel I/O was implemented using MPI I/O and optimized for performance on Lustre filesystem on OLCF machines (Figure 4)
- The tool has been applied for a wide range of data sets up to hundreds of GBs in size

Figure 5: Open source tools for analysis and data sharing

Figure 6: The EVEREST Visualization Facility provides a unique opportunity for analysis of very large simulation output and high resolution data products

Climate Model Diagnostics and Intercomparison

- Cluster analysis makes large, multivariate time-series projections from Earth System Models understandable
- Results from CMIP5 historical and future climate under the RCP 8.5 scenario were analyzed (Figure 10, 11)
- Temperature, precipitation, and soil moisture were used in unsupervised classification

Figure 10: Shifting climate regimes were defined using clustering and tracked through time

Figure 11: *Centroids form a skeleton in state space*

Jitendra Kumar: jkumar@climatemodeling.org

Forrest Hoffman: forrest@climatemodeling.org

