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Introduction

• Accurate characterization is useful to understand the properties
and organization of the landscape, optimal sampling network de-
sign, measurement and process up-scaling and to establish a
landscape-based framework for multi-scale modeling of ecosys-
tem processes.

• This study seeks to map land cover types in the Seward Peninsula
of Alaska using large volumes of high-resolution satellite remote
sensing datasets (Figure 2).

• We used data analytics algorithms applied to Phased Array type
L-band Synthetic Aperture Radar (PALSAR), Interferometric Syn-
thetic Aperture Radar (IfSAR), and Landsat 8 Operational Land
Imager (OLI) datasets to develop high-resolution (∼12 m) land
cover maps (Table 1).

• PALSAR’s L-band SAR yields detailed, all-weather, day-and-night
observation.

• We seek to evaluate the sensitivity between optical and PAL-
SAR datasets for specific land cover types.

Figure 1: Study area (black line) over the Seward Peninsula of
Alaska. The background is Interferometric Synthetic Aperture Radar
(IfSAR) elevation values in meters provided by Geographic Informa-
tion Network of Alaska.

Table 1: Characteristics of the remotely sensed data used in this
work.

Platform Sensor Characteristics Dates Images
ALOS PALSAR L (HV) 07/28/08 - 09/07/08 37
Landsat 8 OLI 2,3,4,5,6, and 7 09/07/14 1
Airborne IfSAR DEM Summer 2012 15

Figure 2: (a) ALOS-1 PALSAR HV composite and (b) Landsat 8 OLI
NDVI over the study region.

Unsupervised Clustering

• Hoffman et al. (2008) developed a parallel version of the k-means
algorithm to accelerate convergence, handle empty cluster cases,
and obtain initial centroids through a scalable implementation of
the Bradley and Fayyad (1998) method.

• Kumar et al. (2011) extended this to a fully distributed and highly
scalable parallel version of the k-means algorithm for analysis of
very large datasets, which was used in this study.

• ALOS-1 PALSAR, Landsat 8 OLI and IfSAR, consisting of ∼270
M cells for the Seward Peninsula at 12 m resolution with 9 inputs,
was analyzed using k -means clustering (Table 2).

• Three classifications were tested to assess the validity of using
optical and SAR HV (horizontal transmitting, vertical receiving)
datasets.

• We performed three classifications: (1) IfSAR and Landsat 8 OLI,
(2) IfSAR, Landsat 8 OLI, and ALOS-1 PALSAR, and (3) IfSAR
and ALOS-1 PALSAR (Figure 3).

• Clustering yields maps in which each cell is classified into one of
k classes that is representative of land cover.

Table 2: The characteristics used in the k-means clustering algo-
rithm for the classification of IfSAR, ALOS-1 PALSAR, and Landsat
8 Operational Land Imager (OLI), where TOA stands for top of atmo-
sphere.

Variable Mean Standard Deviation Platform Resolution
Elevation 192.04 158.7 IfSAR 5 m
HV 0.02 0.05 ALOS-1 PALSAR 12 m
TOA Blue Band 0.1 0.01 Landsat 8 (OLI) 30 m
TOA Green Band 0.08 0.01 Landsat 8 (OLI) 30 m
TOA Red Band 0.07 0.02 Landsat 8 (OLI) 30 m
TOA NIR Band 0.2 0.08 Landsat 8 (OLI) 30 m
TOA SWIR 1 0.2 0.07 Landsat 8 (OLI) 30 m
TOA SWIR 2 0.1 0.04 Landsat 8 (OLI) 30 m
NDVI 0.5 0.3 Landsat 8 (OLI) 30 m

Figure 3: Unsupervised clustering (k=100) of Landsat 8 OLI and
ALOS-1 PALSAR HV over the study region.

Mapcurves & Label Stealing

• Clustering is an unsupervised classification technique, so clus-
tered regions have no descriptive labels like Moist Tundra.

• Hargrove et al. (2006) developed a method for quantitatively com-
paring categorical maps that is 1) independent of differences in
resolution, 2) independent of the number of categories in maps,
and 3) independent of the directionality of comparison.
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• Label stealing allows us to perform automated “supervision” to
“steal” the best human-created descriptive labels to assign.

• The following map (Figure 4) was used for “label stealing”,
the Arctic Transitions in the Land-Atmosphere System (ATLAS)
(http://geobotanical.portal.gina.alaska.edu).

Figure 4: Arctic Transitions in the Land-Atmosphere Sys-
tem (ATLAS) land cover dataset over study area. This
data was provided by Alaska Arctic Geoecological Atlas
(http://geobotanical.portal.gina.alaska.edu).

• Tables 3 list the percent error when comparing the area of land
cover to ATLAS.

• Figure 5 compares the area (top) and GOF scores (bottom) of land
cover classes to ATLAS.

• Figure 6 shows a zoomed in area of the Mapcurves method ap-
plied to ATLAS near the Council airport.

• Figure 7 show a zoomed in area of the Mapcurves method applied
to ATLAS near Kougarok road.
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Figure 5: (Top) Area (km2) and GOF scores (Bottom) from
Mapcurves and label stealing of the ATLAS land cover dataset for
k=100.

Figure 6: Zoomed in of (a) Landsat 8 OLI true color (b) ATLAS land
cover classes, (c) Landsat 8 OLI “label stealing”, (d) ALOS-1 PAL-
SAR HV “label stealing”, and (e) Landsat 8 OLI and ALOS-1 PAL-
SAR HV “label stealing” near the Council airport.

Figure 7: Zoomed in of (a) Landsat 8 OLI true color (b) ATLAS land
cover classes, (c) Landsat 8 OLI “label stealing”, (d) ALOS-1 PAL-
SAR HV “label stealing”, and (e) Landsat 8 OLI and ALOS-1 PAL-
SAR HV “label stealing” near Kougarok road.

Table 3: Percent error using Mapcurves between ATLAS and unsu-
pervised clustering.

Class
Moist Tundra Shrubs Dry Tundra Spruce Forest

DEM, PALSAR k=100 44.13 % 79.44 % 33.88 % 26.27 %
DEM, PALSAR, Landsat k=100 25.18 % 48.51 % 4.05 % 12.10 %
DEM, Landsat k=100 24.66 % 50.38 % 7.93 % 10.97 %

Conclusions & Future Work

• We used a k-means clustering algorithm on Landsat 8 OLI and
ALOS-1 PALSAR over the Seward Peninsula of Alaska to create
high-resolution (∼12m) land cover maps.

• The Mapcurves approach was applied to steal land cover or veg-
etation type labels for unsupervised classifications.

• We compared three different clustering combinations (Table 3) for
k=100.

• The combined Landsat 8 OLI and ALOS-1 PALSAR had the best
combination with lowest percent error (∼20 %) for the main land
cover types.

• Label stealing of the ATLAS dataset indicates that ALOS-1 PAL-
SAR could be used alone for identifying certain land cover types
(Table 3).

• We also intend to look into:
– Combination of multiple polarimetric signals (i.e., HH, HV, VV,

VH) and k clustering values for shrub identification.
– Comparing an object-based image analysis algorithm (Figure 8)

to unsupervised clustering.

Figure 8: Image segmentation (blue lines) applied for an area near
Council.
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