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Research Questions

I Can we map wildfires in Interior Alaska based on imbalanced classes (wildfire vs.
no-wildfire)?

I Use of MLP for supervised classification using MODIS as input and Monitoring
Trends in Burn Severity (MTBS) as target variable.

I Does a weight-selection strategy on a deep MLP model based on the imbalanced
class improve performance?

Overview
I Bounded by Interior Alaska,

based on climate conditions.

I Background class (no-wildfire)
significantly outweighs the
wildfire class for 2004.

I 1,742,618 no-wildfire pixels and
105,072 wildfire pixels
(500×500 m).

I Select MLP weights during
training that reflect the
imbalanced class.

I Added segmentation algorithm
and XGBoost for comparison.



Motivation

I Need to provide unique datasets for model parameterization on topics ranging
from watershed hydrology to plant physiology that is being adopted by DOE’s Earth
System Modeling program and Next Generation Ecosystem Experiment (NGEE)
Arctic (https://ngee-arctic.ornl.gov/).

NGEE Arctic Mission Statement https://ngee-arctic.ornl.gov/mission

https://ngee-arctic.ornl.gov/
https://ngee-arctic.ornl.gov/mission


Class Imbalance Problem

Learning to Reweight Examples for Robust Deep Learning (Ren
et al., 2018)

I Imbalanced data classification exists where
one class (e.g., burned areas) contains a
much smaller sample size than the others
(e.g., unburned areas) in classification. It
poses a great challenge for DNN
architectures, due to the difficulty in
recognizing the minority class (Sze-To and
Wong, 2017).

I However, there has been a significant
amount of research performed on the class
imbalance problems using dataset
resampling (Chawla et al., 2002),
cost-sensitive weighting (Ting, 2000), and
few-shot learning (Ravi and Larochelle,
2017).

I To determine the weights, Ren et al.
(2018) method performs a meta gradient
descent step on the current mini-batch
example weights to minimize the loss on a
clean unbiased validation set.



Alaska Wildfires – 2004

I One of the warmest and driest summers on record.

I Most lightning strikes recorded during summer.

I Wildland fires burned the largest area in recorded Alaska history.

I Total fires were 701 and area burned 6,600,000 acres.

Departure from average temperature across Alaska for every year
since 1949. (Image Source: Alaska Climate Research Center)

Historical Lightning
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Legend

Scale: 1:12,350,091

This map is a user generated static output from an Internet mapping site and is for
general reference.  Data layers that appear on this map are obtained from many
sources.  This map is not to be used for navigation.

Map Created:
Apr 2, 2018 12:31:50 PM

on the AICC Mapping Site
Number of lightnings strikes (6,538) in Alaska from June 5–19,
2004. The grand total was over 147,642 strikes.



Remote Sensing Datasets

We used Google Earth Engine (GEE) for processing images. Two types of datasets were
used:

I MODIS: MOD09A1 (Surface Reflectance 8-Day L3 Global 500m)

I MODIS: MOD11A2 (Land Surface Temperature and Emissivity 8-Day L3 Global
1km)

Description Resolution Variable

MOD09A1 500 m at 8
days

NDVI

500 m at 8
days

EVI

500 m at 8
days

SAVI

500 m at 8
days

Bands 1–7
(459–2155 nm)

MOD11A2 1 km at 8
days

Daytime LST
(Kelvin)

Google Earth Engine JavaScript API



Monitoring Trends in Burn Severity (MTBS)

I Includes all fires 1000 acres or greater in the western United States.

I Developed and managed by the USGS, USDA, and NASA using
Landsat datasets.
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MTBS Area for Interior Alaska NASA Landsat 7 Image Over Interior
Alaska



Image Processing

I Increased resolution to 500 m for all
datasets, GEE performs nearest neighbor
resampling.

I Linear interpolation for missing values.

I Savitzky-Golay filter was applied to
smooth out noise.

I Converted MTBS vector boundary to
raster pixels.
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Example image processing workflow applied to a large wildfire,
which occurred on July 6, 2004.

!

Latitude: 66o 16' 51.6"
Longitude: -149o 59' 34.8"
Fire Ignition Date: July 06, 2004
Assessment Type: Extended
Pre-Fire Image Date: June 23, 2001 (Landsat 7)
Post-Fire Image Date: July 20, 2005 (Landsat 7)

This map portrays fire severity for the fire specified in the map title and summarizes proportions
of fire severity classes.  These data are produced under the Monitoring Trends in Burn Severity
(MTBS) project jointly implemented by the USGS EROS and the USFS RSAC. The MTBS project
ascertains the locations of fires based on available fire occurrence information provided by federal
and state agencies, and other reliable sources.  The MTBS project reserves the right to correct,
update or modify geospatial inputs to this map without notification.                                     
* Areas in either the pre-fire or post-fire reflectance imagery containing clouds, snow, shadows,
smoke, significantly sized water bodies, missing lines of image data, etc.                              

2004 Alaska: DALL CITY
ak6628114999320040706

Acreage of Burn Severity
Burn Severity

Total

Acres

530,687

Unburned to Low
Low
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High
Increased Greenness
Non-Processing Area Mask* 138,788

5,559
90,592

125,580
103,013

67,155
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Miles

Fire severity for the Boundary fire based on Landsat 7. (Source:
USGS and US Forest Service)



Validation-Loss Strategy

MODIS Images Split Data into
Training and Test

DNN Training for 50
Epochs

Save Weights

VL Improve
After 1 Epochs?

Test with Trained
DNN

Split Data into
Training, Validation,

and Test
DNN Training for 50

EpochsMODIS Images

Normal DNN Training

DNN Training Using VL Strategy 

Yes

Has DNN Trained
50 Epochs?

No

No

Test with Trained
DNN

Yes

I Weight selection strategy from Sze-To and Wong (2017).

I Normal DNN training loss/accuracy measured on training data.

I VL strategy splits data into equal parts per class for for selecting weights.

I Split data equally between classes for measuring VL.

I Done by: keras.callbacks.ModelCheckpoint(filepath, monitor=’val loss’, verbose=0,
save best only=False, save weights only=False, mode=’auto’, period=1)



Deep MLP Models

self.model = Sequential()
self.model.add(Dense(60, activation=relu, kernel initializer=normal, input dim=nb bands))
self.model.add(Dense(30, kernel initializer=normal, activation=relu))
self.model.add(Dense(10, kernel initializer=normal, activation=relu))
self.model.add(Dense(nb classes, kernel initializer=normal, activation=softmax))
self.model.summary()
self.model.compile(optimizer=Adam(), loss=sparse categorical crossentropy, metrics=[accuracy])

286
200

50
10

2
MODIS Images

Deep Neural Network

Wildfire Map



Training/Testing/Validation Datasets

Dataset No-Fire Fire Percentage
Dataset-0 Train 1154333 70493 75%
Dataset-0 Test 427115 26356 25%
Dataset-0 Validation 7947 7947 10%
Dataset-1 Train 384375 23477 25%
Dataset-1 Test 1282862 78702 75%
Dataset-1 Validation 2617 2617 10%
Single Wildfire 9724 276 <1%

source:https://en.wikipedia.org/wiki/Precision_and_recall

I Number of pixels (500×500)
used for training, testing, and
validation.

I The validation column was only
applied when using the VL
strategy.

I Precision – high value means
that an algorithm returned
substantially more relevant
results than irrelevant ones.

I Recall – high value means that
an algorithm returned most of
the relevant results

https://en.wikipedia.org/wiki/Precision_and_recall


Results – MLP Training
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Dataset-1 training

I Showing scores during VL mode when classes are split equally for validation.

I Weights selected using lowest VL.

I Dataset-0 Validation Samples (7947) for each class.

I Dataset-1 Validation Samples (2617) for each class.



Results – Conventional DNN Training

Conventional DNN training method precision, recall, and number of test samples
Dataset Class Precision Recall Samples

0
Fire 0.90 0.90 26356
No-Fire 0.99 0.99 427115

1
Fire 0.00 0.00 78702
No-Fire 1.00 1.00 1282862
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Results – VL DNN Training

VL DNN training method precision, recall, and number of test samples
Dataset Class Precision Recall Samples

0
Fire 0.68 0.95 26356
No-Fire 1.00 0.97 427115

1
Fire 0.61 0.96 78702
No-Fire 1.00 0.96 1282862
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Results – U-Net Segmentation

I U-Net is 2D CNN architecture for fast and precise segmentation of images Ronneberger
et al. (2015).

I Consists of a contracting path (left side) and an expansive path (right side).

U-Net training method precision, recall, and number of test samples
Dataset Class Precision Recall Samples

0
Fire 0.00 0.00 518879
No-Fire 0.95 1.00 27293



Results – XGBoost Algorithm

I XGBoost is a scalable and accurate implementation of gradient boosting machines (Chen
and Guestrin, 2016).

I XGBoost used a more regularized model formalization to control overfitting.

Table: XGBoost method scores for precision, recall, and number of test samples

Dataset Class Precision Recall Samples Region

0

Fire 0.94 0.85 26,356 Study Region
No-Fire 0.99 1.00 427,115 Study Region
Fire 0.88 0.77 276 Single Wildfire
No-Fire 0.99 1.00 9,724 Single Wildfire

1

Fire 0.94 0.85 78,702 Study Region
No-Fire 0.99 1.00 1,282,862 Study Region
Fire 0.88 0.76 276 Single Wildfire
No-Fire 0.99 1.00 9,724 Single Wildfire

Source:https://www.kdnuggets.com



Conclusions and Next Steps

I MODIS bands can be used to predict spatial extents of wildfire with good accuracy.

I Google Earth Engine provides a powerful platform for processing and analyzing datasets
without moving data.

I VL DNN training strategy significantly improves performance and possibly captures
unknown wildfires outside MTBS dataset.

I Next steps: more sophisticated algorithms utilizing sequential data and meta-learning
approaches.

Source: Convolutional Recurrent Neural Networks for
Hyperspectral Data Classification Wu and Prasad (2017)
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