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Introduction

• Tropical vegetation is poorly represented in current Earth system models (ESMs).
• Spatial heterogeneity of highly diverse tropical forests is absent from ESMs.
• Understanding potentially vulnerable tropical systems is important under a changing climate (DOE, 2012).
• Logistics and resource constraints limit where and when measurements can be made.
• Tropical forest research will require upscaling methods and quantitative quality assessment of currently available
data.

Methods

1. Classify ecoregions using Multivariate Spatiotemporal Clustering (MSTC)
2. Label unsupervised classification with ecoregion type names using Mapcurves
3. Quantify representativeness of single and combined network coverage using distance in a hyper-volume data

space

(See Hoffman et al. (2013).)

Ecoregion Delineation

Figure 1: Multivariate Spatiotemporal Clustering
(MSTC)

Table 1: Variables used in MSTC for ecoregion delineation and represen-
tativeness analysis. These data are raster grids with a 4km2 resolution.

Variable Description Units

Bioclimatic Variables
Precipitation during the hottest quarter mm
Precipitation during the coldest quarter mm
Precipitation during the driest quarter mm
Precipitation during the wettest quarter mm
Ratio of precipitation to potential evapotranspiration
Temperature during the coldest quarter ◦C
Temperature during the hottest quarter ◦C
Day/night diurnal temperature difference ◦C
Sum of monthly Tavg where Tavg ≥ 5◦C ◦C
Integer number of consecutive months where Tavg ≥ 5◦C

Edaphic Variables
Available water holding capacity of soil
Bulk density of soil g/cm3

Carbon content of soil g/cm2

Nitrogen content of soil g/cm2

Topographic Variables
Compound topographic index (relative wetness)
Solar interception (kW/m2)
Elevation m
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Figure 2: Mapcurves compares the agreement
and disagreement of categorical maps in a way
that is independent of differences in resolution, the
number of categories, or the direction of compari-
son (Hargrove et al., 2006).
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Goodness of Fit (GOF) is a unitless measure of
spatial overlap between map categories.

Table 2: Expert maps used with the mapcurves algorithm to assign labels
to the MSTC results.

Map # Categories

Foley Land Cover 14
Holdridge Life Zones 25
IGBP Land Cover 16
European Space Agency Global Land Cover Map 23
Olson’s Ecoregions of the World 14

Representativeness Analysis of Points and Networks

1. Representativeness analysis compares a single
point to all other points in data space.

2. Euclidean distance in data space is mapped as
a dissimilarity score in geographic space, where
darker colors indicate high degrees of dissimilar-
ity.

3. A single map is created from all maps (sites) in
a set by selecting the minimum values for each
grid cell from the collection of maps (network of
sites).

Table 3: Total number of sites for each network used in the representa-
tiveness analysis.

Network Number of Sites

RAINFOR 368
CTFS-ForestGEO 59
Fluxnet 240

Results

Ecoregion Classification

( a ) k=10 ( b ) k=25

( c ) k=50 ( d ) k=50 reclass

Figure 3: The MSTC algorithm was used to group the 17 observation vectors (Table 1) into regions with equal
variance across all clusters. Clustering was repeated until 0.05% of all observations changed cluster membership
between iterations (Kumar et al., 2011). The results are categorical maps of k regions. The derived ecoregions
were then identified for type using the mapcurves algorithm developed by Hargrove et al. (2006) with a suite of
expert ecoregion maps (Table 2). The k=50 map was manually reclassified to group similarly labeled regions (d).

Representativeness Analysis for Individual Monitoring Networks

Figure 4: Single Point Representativeness: CTFS-ForestGEO, Mpala, Kenya. Representativeness of the entire
globe with respect to an individual sampling point quantified in data space. Euclidean distance in data space is
mapped as a dissimilarity score in geographic space, where darker colors indicate high degrees of dissimilarity.

( a ) CTFS-ForestGEO ( b ) FLUXNET

( c ) RAINFOR

Figure 5: Network Representativeness: Total representativeness for the CTFS-ForestGEO, Fluxnet, and RAINFOR
networks. Each network representativeness map was created from all single point maps (sites) in a set by selecting
the minimum values for each grid cell from the collection of maps (network of sites). Table 3 lists the number of
points in each sampling network. Darker colors indicate high degrees of dissimilarity.

Representativeness Analysis for Combined Monitoring Networks
Individual network representativeness maps (Figure 5) were combined as an RGB map where color combinations
represent combinations of network coverage.

Figure 6: Combined Representativeness of Fluxnet ( ), CTFS-ForestGEO ( ), and RAINFOR ( ). Color combina-
tions of RGB represent the combined coverage of the three networks where white areas are combinations of all
three and dark areas lack coverage of any network.

Figure 7: Combined Representativeness of
Fluxnet ( ), CTFS-ForestGEO ( ), and RAINFOR
( ) for forested regions globally. Forested regions
were defined using MSTC (Figure 3(d)). Color
combinations of RGB represent the combined
coverage of the three networks where white areas
are combinations of all three and dark areas lack
coverage of any network.

Figure 8: Combined Representativeness of
Fluxnet ( ), CTFS-ForestGEO ( ), and RAINFOR
( ) for tropical forested regions globally. Forested
regions were defined using MSTC (Figure 3(d)).
Color combinations of RGB represent the com-
bined coverage of the three networks where white
areas are combinations of all three and dark areas
lack coverage of any network.

Conclusions

• (1) Landscape classification with MSTC, (2) Mapcurves, and (3) representative analysis are a suite of tools
suitable for the quantitative assessment of data from monitoring networks in space and time.

• Poorly covered regions revealed by using these tools are potential areas for future network sites.
• These methods are part of a larger effort of data upscaling and quantifying uncertainty in model data assimilation.
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