

Introduction

- Tropical vegetation is poorly represented in current Earth system models (ESMs).
- Spatial heterogeneity of highly diverse tropical forests is absent from ESMs.
- Understanding potentially vulnerable tropical systems is important under a changing climate (DOE, 2012).
- Logistics and resource constraints limit where and when measurements can be made. • Tropical forest research will require upscaling methods and quantitative quality assessment of currently available

Methods

- 1. Classify ecoregions using Multivariate Spatiotemporal Clustering (MSTC)
- 2. Label unsupervised classification with ecoregion type names using Mapcurves
- 3. Quantify representativeness of single and combined network coverage using distance in a hyper-volume data

(See Hoffman et al. (2013).)

space

Ecoregion Delineation

Figure 1: Multivariate Spatiotemporal Clustering (MSTC)

Variable Description **Bioclimatic Variables** Precipitation during the hottest quarter Precipitation during the coldest quarter Precipitation during the driest quarter Precipitation during the wettest quarter Ratio of precipitation to potential evapotranspiration Temperature during the coldest quarter Temperature during the hottest quarter Day/night diurnal temperature difference Sum of monthly T_{avg} where $T_{avg} \ge 5^{\circ}$ C Integer number of consecutive months where $T_{avg} \ge 5^{\circ}C$ Edaphic Variables Available water holding capacity of soil

Bulk density of soil Carbon content of soil Nitrogen content of soil

Topographic Variables Compound topographic index (relative wetness) Solar interception Elevation

Mapcurves

Polygon from Map 2 (Reference Map) Polygon from **Being Compared**

Figure 2: Mapcurves compares the agreement and disagreement of categorical maps in a way that is independent of differences in resolution, the number of categories, or the direction of comparison (Hargrove et al., 2006).

Representativeness Analysis of Points and Networks

- 1. Representativeness analysis compares a single point to all other points in data space.
- 2. Euclidean distance in data space is mapped as a dissimilarity score in geographic space, where darker colors indicate high degrees of dissimilar-
- 3. A single map is created from all maps (sites) in a set by selecting the minimum values for each grid cell from the collection of maps (network of sites).

Goodness of Fit (GOF) is a unitless measure of spatial overlap between map categories.

Table 2: Expert maps used with the mapcurves algorithm to assign labels
 to the MSTC results.

Map

Foley Land Cover Holdridge Life Zones IGBP Land Cover European Space Agency Glob Olson's Ecoregions of the Wo

Table 3: Total number of sites for each network used in the representativeness analysis.

Network

RAINFOR **CTFS-ForestGE** Fluxnet

Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage

Damian M. Maddalena, Forrest M. Hoffman, Jitendra Kumar, William Hargrove

	# Categories
	14
	25
	16
obal Land Cover Map	23
/orld	14

368 EO 59 240	Number of Sites	
	EO	368 59 240

Figure 3: The MSTC algorithm was used to group the 17 observation vectors (Table 1) into regions with equal variance across all clusters. Clustering was repeated until 0.05% of all observations changed cluster membership between iterations (Kumar et al., 2011). The results are categorical maps of k regions. The derived ecoregions were then identified for type using the mapcurves algorithm developed by Hargrove et al. (2006) with a suite of expert ecoregion maps (Table 2). The k=50 map was manually reclassified to group similarly labeled regions (d).

Representativeness Analysis for Individual Monitoring Networks

Figure 4: Single Point Representativeness: CTFS-ForestGEO, Mpala, Kenya. Representativeness of the entire globe with respect to an individual sampling point quantified in data space. Euclidean distance in data space is mapped as a dissimilarity score in geographic space, where darker colors indicate high degrees of dissimilarity.

(a) CTFS-ForestGEO

(c) RAINFOR

Figure 5: Network Representativeness: Total representativeness for the CTFS-ForestGEO, Fluxnet, and RAINFOR networks. Each network representativeness map was created from all single point maps (sites) in a set by selecting the minimum values for each grid cell from the collection of maps (network of sites). Table 3 lists the number of points in each sampling network. Darker colors indicate high degrees of dissimilarity.

(d) k=50 reclass

(b) FLUXNET

Individual network representativeness maps (Figure 5) were combined as an RGB map where color combinations represent combinations of network coverage.

Figure 6: Combined Representativeness of Fluxnet (•), CTFS-ForestGEO (•), and RAINFOR (•). Color combinations of RGB represent the combined coverage of the three networks where white areas are combinations of all three and dark areas lack coverage of any network.

7: Combined Representativeness of Figure Fluxnet (•), CTFS-ForestGEO (•), and RAINFOR (•) for forested regions globally. Forested regions were defined using MSTC (Figure 3(d)). Color combinations of RGB represent the combined coverage of the three networks where white areas are combinations of all three and dark areas lack coverage of any network.

•(1) Landscape classification with MSTC, (2) Mapcurves, and (3) representative analysis are a suite of tools suitable for the quantitative assessment of data from monitoring networks in space and time.

• These methods are part of a larger effort of data upscaling and quantifying uncertainty in model data assimilation.

Journal of Geographical Systems, 8(2):187–208, 2006.

Damian M. Maddalena email: damian@climatemodeling.org

Representativeness Analysis for Combined Monitoring Networks

Figure 8: Combined Representativeness of Fluxnet (•), CTFS-ForestGEO (•), and RAINFOR (•) for tropical forested regions globally. Forested regions were defined using MSTC (Figure 3(d)). Color combinations of RGB represent the combined coverage of the three networks where white areas are combinations of all three and dark areas lack coverage of any network.

Conclusions

• Poorly covered regions revealed by using these tools are potential areas for future network sites.

References

DOE. Research priorities for tropical ecosystems under climate change. Technical report, Department of Energy, 2012.

Forrest M Hoffman, Jitendra Kumar, Richard T Mills, and William W Hargrove. Representativeness-based sampling network design for the State of Alaska. Landscape Ecology, 28(8):1567–1586, 2013.

William W Hargrove, Forrest M Hoffman, and Paul F Hessburg. Mapcurves: a quantitative method for comparing categorical maps.

Jitendra Kumar, Richard T Mills, Forrest M Hoffman, and William W Hargrove. Parallel k-means clustering for quantitative ecoregion delineation using large data sets. Procedia Computer Science, 4:1602–1611, 2011.

Contact Info