
Towards improved accuracy and efficiency of 
ecohydrologic processes using artificial intelligence 

Ecohydrology is the study of ecosystem and water cycle 
science, and understanding interactions among ecohydrologic 
mechanisms is challenging. Artificial Intelligence and Machine 
Learning (AI/ML) approaches are likely to provide new avenues 
for simulating mechanistic processes at different scales. In this 
work, we apply ML-based methods to improve simulations of 
vegetation processes relevant to ecohydrology, such as 
photosynthesis and stomatal conductance. Our results 
showcase improved skill and reduced computational cost of 
ML-based methods compared to commonly used empirical 
approaches. This work explores potential benefits of combining 
ML-based methods with existing approaches in ecohydrology.
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Fig. 1. Schematic of primary processes in ecohydrology, shown as an example 
of integrated ecohydrologic processes required for modeling across scales. 

Fig. 2. A variety of measurement techniques are required across spatial scales 
to improve representation of ecohydrologic processes with ML approaches. In 
this work, we employed leaf-level data to perform the ML simulations.

Fig. 3. A process schematic of a full-complexity land surface model. All 
processes are intended to allow alternative specification, including empirical 
or ML-derived formulations (Adapted from Fisher and Koven, 2020). For this 
work, we focus on building ML models to simulate photosynthesis and stomatal 
conductance and we compare with empirical formulations and observed data.

Ecohydrology bridges the gap between ecosystem ecology 
and water cycle science by incorporating knowledge of land 
surface processes, plants, atmospheric science, and hydrology. 

Ecohydrologic processes operate at varying scales ranging 
from stomates and microorganisms to canopies, forests, 
watersheds, continents and the entire globe (Fig. 1 & 2).

Research is being conducted to determine the benefits of 
implementing and integrating ML-based methods within 
Earth System Models (ESM) and ecohydrologic models (Fig. 3). 

ML-based simulators will not replace the representation of 
older empirical approaches, but instead will supplement and 
act as an interchangeable model choice to larger models. 

ML-based methods require training from observed datasets. 
Datasets that capture specific ecohydrologic processes are 
rare, however, making it challenging to benefit from ML. 

We compiled information from a collection of various leaf-level 
data (e.g., Lin et al. 2015; Anderegg et al. 2018; Han et al. 2022). 
This curated dataset is used to develop initial ML models for 
photosynthesis and stomatal conductance (Fig. 4). Preliminary 
results from our investigations are shown here (Fig. 5 & 6).

Fig. 4. Schematic of Neural Network implemented in this study, with the inputs 
shown on the left, and the outputs on the right. Different input layers and 
hidden layers were tested to optimize the prediction skill of the Neural Net.

We collected data and provided curation for leaf-level fluxes 
from Lin et al. 2015, Anderegg et al. 2018, and Han et al. 2022. 

This data set will be used for systematic benchmarking and for 
ML training. The code below shows how to download the data:

import intake cat = 
intake.open_catalog("https://raw.githubusercontent.c
om/nocollier/MLPhotoSynthesis/main/data/leaf-
level.yaml") 
df = cat['Lin2015'].read() 

Data catalog being prepared for this work 
as well as for use by the community.

Processes can be 
represented by:

- empirical 
formulations 

- ML-based models

Fig. 5. Empirical (CLM5) and ML-based (Neural Network) models to simulate 
photosynthesis, compared to observations from Lin 2015, for Broadleaf 
Deciduous Temperate Trees. Changes to the Vc,max parameter (top) or the 
Vc,max function (center) do not allow a fit as good as the Neural Net (bottom). 
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We simulated photosynthesis using empirical formulations 
from CLM5 (Fig. 5) via the MAAT toolbox, c.f. Walker et al., 2018. 
Changing the Vc,max parameter and empirical function do 
not allow a proper fit with the observed dataset (e.g., for high 
leaf temperatures). Then, we tested a Neural Network that was 
trained on the Lin 2015 data, and we found a much stronger fit.

We tested commonly used empirical formulations for stomatal 
conductance (Ball-Berry/Medlyn) and ML-based models 
(Random Forests) using the same inputs as the empirical 
methods as well as additional inputs from dataset (Fig. 6).

Results: Photosynthesis

Results: Stomatal Conductance

Choices for Neural Net: # of layers, learning 
rate, loss and activation functions, epochs, etc.

Fig. 6. Ball-Berry (top left), Medlyn (top right), and Random Forests using the 
same inputs (bottom left) and additional inputs (bottom right), compared to 
observations from Lin 2015. Inputs: leaf-level CO2, photosynthesis, and VPD.

Ball-Berry and Medlyn with inputs: 
leaf-level CO2, photosynthesis, and VPD 

Random Forest with same (left) and additional 
(right) inputs as empirical functions.

The evolution of ML-informed ESMs and ecohydrologic models 
will require a community effort, involving multiple disciplines, 
advanced training, and new ways of designing, implementing, 
parameterizing and communicating model outputs.

In this work, we developed initial ML-based prototypes for 
simulating photosynthesis and stomatal conductance. 

Preliminary results from our investigations showed improved 
performance for photosynthesis using Neural Networks 
compared to an empirical (CLM5) formulation. We found the 
same benefits for stomatal conductance using Random 
Forests compared to Medlyn & Ball-Berry empirical methods.

Future work utilizing ML-based methods in ecohydrology will 
require additional and richer data to properly train the models.

The code to implement these approaches is hosted on GitHub 
(https://github.com/rubisco-sfa/MLEcohydrology), where 
future investigations and developments will also be hosted.

Most process-based or empirical formulations have continuous 
response surfaces and therefore are differentiable. However, 
ML-based models may exhibit discontinuities in their surfaces, 
due to things such as gaps in the data representation.

We can see in the figure below (Fig. 7) that discontinuities exist 
in certain regions of the Random Forest heat map of stomatal 
conductance. For Medlyn, the surface is smoother. Simulations 
here use VPD and photosynthesis as inputs to the models. 

The discontinuities shown for the Random Forest model are 
likely to have numerical consequences when attempting to 
couple and integrate ML-based formulations into larger ESMs.

Fig. 7. Multi-dimensional response surface of the Random Forest heat map of 
stomatal conductance, using VPD and photosynthesis as inputs. The Medlyn 
surface (left) is smoother than the one generated by the Random Forest (right).
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