
Introduction Limitations in Cray MPT Application Case Studies Conclusions

Coping at the User-Level with Resource
Limitations in the Cray Message Passing Toolkit

MPI at Scale:
How Not to Spend Your Summer Vacation

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1,
Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and

Barry F. Smith4

1Oak Ridge National Laboratory, 2Lawrence Livermore National Laboratory,
3Pacific Northwest National Laboratory, 4Argonne National Laboratory

Cray Users Group Meeting • May 6, 2009 • Atlanta, GA

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

We’ve Experienced An Explosion of Processor Cores

The number of processing elements being deployed in Cray
XT series supercomputers has grown at a prodigious rate!
The Cray XT5 Jaguar machine at Oak Ridge National
Laboratory—Number 2 on the Top 500 List at 1.059
PFlop/s—has 150,152 processor cores, 30× that of the
original Red Storm XT3 at Sandia National Laboratories!
But along with this growth has come increasing difficulty in
scaling MPI codes due to limits in message passing resources.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Coping Mechanisms

Some problems due to resource limitations in Portals or the
Cray Message Passing Toolkit (MPT) can be mitigated by
setting appropriate environment variables to increase limits or
specify alternative algorithms (Johansen, CUG 2008).

While such settings—usually arrived at by trial and
error—may allow a code to run to completion, they can have
negative impacts on performance and/or starve the
application of needed memory.

Alternatively, user-level solutions may significantly improve
code performance at scale without reducing available memory
or resorting to disabling performance-enhancing features of
Portals/MPT.

Apparently arriving at this solution independently, a growing
number of Cray XT users have implemented user-level flow
control schemes in their application codes.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Symptoms of Illness

The Cray Message Passing Toolkit (MPT) is based on
MPICH2 from Argonne National Laboratory and supports
two abstract device interfaces (ADI3): Portals for inter-node
communication and SMP for intra-node communication.

Portals uses an eager protocol for sending short messages,
assuming that the destination process can buffer or directly
store these data.

If the destination process has posted a matching receive, the
data are placed in the user-supplied buffer; otherwise, they are
placed in the unexpected buffer and two entries are generated
in the unexpected event queue: a put start event and a put
end event when the data are ready to be used.

Exhaustion of the unexpected buffer and/or overflow of the
unexpected event queue frequently occur when scaling up
application codes.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Getting Professional Help

The size of the unexpected buffer can be set using the
MPICH UNEX BUFFER SIZE environment variable.

The length of the unexpected event queue can be set using
the MPICH PTR UNEX EVENTS environment variable.

Increasing the default values will decrease the amount of
memory available to the application, and it may not be
possible to set them large enough to avoid program failures.

Alternatively, the number of unexpected messages can be
decreased by lowering the default maximum size of short
message sizes using the MPICH MAX SHORT MESSAGE SIZE
environment variable.

As a final solution, setting MPICH PTL SEND CREDITS to -1
will use a flow control mechanism to prevent overflow of the
unexpected event queue in any situation.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Other Conditions

The Portals other events queue is used for all other
MPI-related events, including MPI-2 remote memory access
(RMA) requests, sending of data (send end and reply end
events), and pre-posted receives.

Restructuring code to pre-post receives to avoid failures resulting
from unexpected events may result in failures due to too many
other events being generated!

The size of the other events queue can be increased using the
MPICH PTL OTHER EVENTS environment variable.

The SMP device can cause failures due to the limit on the
maximum number of internal MPI message headers, which
can be increasing using the MPICH MSGS PER PROC
environment variable.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Patient #1: Parallel k-means Cluster Analysis

Communication in this typical master/slave application
involves primarily one-to-one message passing in which

1 the master assigns blocks of work to each slave,
2 each slave works independently then reports back to the master

with results (implicitly requesting another block of work),
3 at the end of an iteration each slave sends additional summary

data to the master, and
4 the master recomputes centroid locations and broadcasts them

to the slaves.

These steps repeat until some convergence criterion is met.

A new acceleration algorithm was recently added in which
some or all slave processes cooperate in the sorting (in
parallel) of distance vectors that are then gathered to all
slaves using MPI Allgatherv().

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Symptoms and Treatment

For the AmeriFlux data set with k = 8000 clusters, the code
performs best using 1,025 cores (1,024 slaves + 1 master).

With Cray MPT 3.0.3 the program crashes as follows in
MPI Allgatherv() at 2,049 processes, but runs to completion
at 4,097 processes.
[128] MPICH has run out of unexpected buffer space.

Try increasing the value of env var MPICH_UNEX_BUFFER_SIZE (cur value is 62914560),

and/or reducing the size of MPICH_MAX_SHORT_MSG_SIZE (cur value is 128000).

aborting job:

out of unexpected buffer space

Setting MPI UNEX BUFFER SIZE to 4× the default of 60 MB
allowed the program to run in 28 min.

With Cray MPT 3.1.0, the same problem runs in 14 min
without raising MPI UNEX BUFFER SIZE, but runs in 28 min
when setting the environment variable to 4× the default of
60 MB.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Pre-Posting Therapy

Additional development was performed to pre-post receives
(using MPI Irecv()) on the master process just before each
block of work is assigned to a slave.
On the AmeriFlux problem on the Cray XT4, the program
crashes with the following error:
[0] : (/tmp/ulib/mpt/nightly/3.1/112008/mpich2/src/mpid/cray/src/adi/ptldev.c:2854)

PtlMEMDPost() failed : PTL_NO_SPACE

aborting job:

PtlMEMDPost() failed

Apparently, the 2,048 pre-posted receives (of single long
integers) exceed some Portals resource limit, but this error
was eliminated by disabling the registration of receive requests
in Portals by setting MPICH PTL MATCH OFF, with ∼15%
longer runtime than the previous code on the same problem.
In this case, pre-posting receives requires disabling a
communications feature on the XT4 and it has a
deleterious effect on performance.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Patient #2: Subsurface Flow and Reactive Transport

Groundwater code PFLOTRAN is fairly
communication-intensive:

Message passing (“3D halo exchange”) at subdomain
boundaries
Gathers of off-processor vector entries for matrix-vector
products
Numerous MPI Allreduce() calls inside Krylov solvers

Despite this, most phases of code are robust in terms of MPT
resources.

Exception is PETSc VecView() calls in checkpointing.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Symptoms and Treatment

VecView() serialized I/O through process 0

Nonzero ranks all post sends to process 0
Process 0 loops through sends

Causes problems with the unexpected buffer and unexpected
event queue

For very large jobs the size of these must be increased to
impractical size for the VecView() to complete

Initial treatment: Change MPI Send() to MPI Ssend(). No
dice.

Second treatment: Wrote MPI-IO backend for VecView().
Crashed with “PtlMEMDPost() failed : PTL NO SPACE”.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Symptoms and Treatment

Third treatment: Add flow control
All procs participate in series of broadcasts, with proc 0
sending out minimum rank, increased in increments of
flow control group size.
Ranks >= minimum may send their message.

3.5th treatment: Eliminate broadcasts
Form disjoint sets of flow control group size.
Form sub-communicator from union of these with proc 0.
At initiation of VecView(), each process issues MPI Barrier()
on its subcommunicator.
Proc 0 joins each barrier only when ready to process messages
from that group.

Performance of both is identical: Time dominated by write to
disk.
Eventual happy ending: In MPT 3.1.x, using
MPICH MPIIO CB ALIGN makes the MPI-IO backend not only
work, but work very fast!

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Patient #3: Community Atmosphere Model

Default communication protocol is to pre-post all receive
requests, issue all (non-blocking) send requests, then wait for
receives to be satisfied.

At scale, potential of overwhelming any given process with
messages for which it has not posted receives.

Can cause failures if the system cannot allocate sufficient
system buffer space to handle all of the requests, and will
degrade performance in any case with all of the additional
buffer copying.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Symptoms and Treatment

Anomalously large communication times when transposing
between two dynamics decompositions in which one
decomposition was three times smaller.

Apparently the early arrival of messages from the otherwise
idle two-thirds of the processes at the one-third active
processes was causing the performance anomaly.

Similar performance problems have been observed in both
gather and scatter operations (using both MPI collective calls
and point-to-point implementations).

Setting appropriate MPI environment variables does eliminate
the errors in the previous two examples IF size can be set
large enough.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Symptoms and Treatment

Use flow control in form of handshaking messages

After each non-blocking receive is posted, a “zero-byte”
message is sent to the source process.
Upon receipt of this signal, the source process can send the
message. This eliminates all unexpected messages of size
greater than zero.

Still a potential problem in pre-posting more non-blocking
receive requests than are supported on a given system (with
any given MPI environment variable settings).

Potential performance impact from having a large number
posted, if only in the cost of matching receive requests with
the incoming messages.

Potential of overwhelming a given process with the
handshaking messages.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Patient #4: µsik PDES

In n PDES, simulation time can be an arbitrary real value
(typically, a double precision floating point value), with state
updates “scheduled” to be executed in arbitrary time instants
in the future on the real-valued simulation-time axis.

Each processor can potentially be updating its system state at
simulation time instants that are later or earlier than the
simulation time of other processors.

Processors exchange data using “timestamped” events
scheduled by one processor to another.

Events, which are payload (data) tagged with a timestamp
value, are thus scheduled for arbitrary times in the future.

To ensure global causality, events are constrained to be
executed at every processor in non-decreasing timestamp
order.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Patient #4: µsik PDES

Schedulability of updates, the timestamp-ordered event
execution, and the staggered processing of events across
processors, dictate unique parallel execution style of PDES.

Processors are typically highly staggered in simulation time.
so even small levels of local jitter due to communication
overheads can accumulate globally.

Message sizes are typically small (in the range of 64 to 512
bytes each), but the number of messages and the frequency of
sends can be very high (102–104 of inter-processor messages
per second).

Non-blocking messaging is used heavily.

All these messaging characteristics serve to stress the
communication subsystems, amplifying even the slightest
inefficiencies and overheads.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Symptoms and Treatment

Works up to 32768 cores. At 65536, unexpected events buffer
is exhausted.
Difficult to debug: showed up as segfault due to violation of
FIFO message ordering assumptions made in the code.
Communicating cores must be throttled, or the amount of
messages must be reduced.
First treatment: increase parameter ρ, which decreases
inter-processor communication. Very poor performance.
Random selection of the destination for the messages,
spanning the entire range of MPI ranks, makes the destination
list highly dynamic when only a small number of “active
connections” per processor are established and maintained by
the Cray’s network system.
Active connection table was easily being flushed and refilled
with newer connections established on demand to newer
destinations at runtime, resulting in significant latencies.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Symptoms and Treatment

Second treatment: Flow control: For every sender-receiver
pair exchanging events, user-level ack send by receiver once
every k events; sender stalls to receive the ack before
transmitting next message.

Ensures that the network subsystem is burdened by at most k
messages for any given (i , j) ordered pair of MPI ranks.

Improves the performance dramatically, bringing the amortized
event cost down to around 100 µs on 100 000 cores.

Additional improvement: Use message bundling such that
MPI Bsend() is invoked only outside of an event computation
(instead of during event computation), making it somewhat
less vulnerable to the delays in MPI Bsend() processing.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation



Introduction Limitations in Cray MPT Application Case Studies Conclusions

Conclusions

Resource limitations on MPT can cause various symptoms of
illness.

We can get professional help (from Cray, etc.), e.g.,
MPICH PTL SEND CREDITS.

We might need second opinions.

But, ultimately, healing may be a slow process that requires
user involvement.

Richard T. Mills1, Forrest M. Hoffman1, Patrick H. Worley1, Kalyan S. Perumalla1, Art Mirin2, Glenn E. Hammond3, and Barry F. Smith4Coping at the User-Level with Resource Limitations in the Cray Message Passing Toolkit MPI at Scale: How Not to Spend Your Summer Vacation


	Introduction
	Limitations in Cray MPT
	Application Case Studies
	Conclusions

