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A Forest Early Warning System

The USDA Forest Service, NASA Stennis Space Center, and DOE
Oak Ridge National Laboratory are creating a system to monitor
threats to U.S. forests and wildlands at two different scales:

Tier 1: Strategic — An Early Warning System (EWS) that
routinely monitors wide areas at coarser resolution, repeated
frequently — a change detection system to produce alerts or
warnings for particular locations may be of interest

Tier 2: Tactical — Finer resolution airborne overflights and
ground inspections of areas of potential interest — Aerial
Detection Survey (ADS) monitoring to determine if such
warnings become alarms

Tier 2 is largely in place, but Tier 1 is needed to optimally direct
its labor-intensive efforts and discover new threats sooner.



Overview of the Forest Incidence Recognition and State Tracking (FIRST) System



Phenology
FIRST is interested in deviations from
the “normal” seasonal cycle of
vegetation growth and senescence.

We utilize a set of National Phenology
Datasets produced by NASA Stennis
Space Center based on MODIS NDVI.

Outlier/noise removal and temporal
smoothing are performed, followed by
curve-fitting and estimation of
descriptive curve parameters.

Up-looking photos of a scarlet oak showing the timing of
leaf emergence in the spring (Hargrove et al., 2009).



Anomaly detection using map arithmetic

To detect vegetation
disturbances, the current
NDVI measurement is
compared with the normal,
expected baseline for the
same location.

Substantial decreases from
the baseline represent
potential disturbances.

Any increases over the
baseline may represent
vegetation recovery.

Maximum, mean, or
median NDVI may provide
a suitable baseline value.

June 10–23, 2009, NDVI is loaded
into blue and green; maximum NDVI
from 2001–2006 is loaded into
red (Hargrove et al., 2009).
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Data Mining for Change Detection

A difficulty with map arithmetic is identification of appropriate
parameters (maximum NDVI, 20% “spring” NDVI, etc.) to
use, since the appropriate choice of parameters may vary by
region and/or type of forest disturbance.

To complement such approaches, we desire an automated,
unsupervised change detection system.

Using high-performance computing, we apply
geospatiotemporal data mining techniques to perform
unsupervised classification based on multiple years
(2000–2010) of NDVI history for the entire CONUS.

These classifications use the full volume of available NDVI
data (297GB here) to construct a potential basis for
determining the “normal” seasonal and inter-seasonal
variation expected at a geographic location.



Clustering the MODIS NDVI data

All 71B NDVI values in the data set are arranged as annual
NDVI traces of 46 values, for each grid cell (146.4M records)
in each of the 11 yearly maps.

The entire set of NDVI traces for all years and map cells is
combined into one 297 GB (single precision) data set of
1606M 46-dimensional “observation” vectors that are
analyzed via the k-means algorithm.

After applying k-means, cluster assignments are mapped back
to the map cell and year from which each observation came,
yielding 11 maps in which each cell is classified into one of k
phenoclasses

The phenoclasses form a “dictionary” of representative or
prototype annual NDVI traces (the cluster centroids) derived
from the full spatiotemporal extent of the observations in the
input data set.



Geospatiotemporal Clustering



50 Phenoregions for Year 2008 (Clustering 2003–2008)



50 Phenoregion Prototypes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 3

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 4

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 5

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 7

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 10

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 11

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 12

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 13

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 14

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 15

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 16

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 17

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 18

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 19

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 20

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 21

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 22

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 23

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 24

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 25

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 26

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 27

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 28

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 29

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 30

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 31

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 32

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 33

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 34

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 35

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 36

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 37

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 38

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 39

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 40

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 41

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 42

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 43

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 44

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 45

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 46

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 47

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 48

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 49

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cluster 50



Time Evolution of Cluster Assigments

Cluster analysis yields 11 maps, one for each year, that
classify each cell into one of the k phenoclasses. Here k = 50.

The time evolution of phenoclass assignment, or phenostate,
of each cell indicates a trajectory of change in the
phenological behavior observed at that location due to natural
or anthropogenic disturbance and ecosystem responses to
interannual climate variability and long term climate trends.

Comparison of the current phenostate with the nominal
historical phenostate for each cell forms the basis for an early
warning system for forest threats.

Frequency of phenostate occupation for each map cell across
all years provides insights into the phenological persistence or
variability at every location in the CONUS.



Cluster Persistence Map (2000–2009)



Euclidean Transition Distance as an Indicator of Change

Cluster persistence is strongly dependent on the choice of k.

k too large: normal interannual variability results in different
phenostate assignment each year.
k too small: important phenological change may be missed.

One alternative: use a larger value of k and create maps of
Euclidean “transition” distance between phenostate
assignments in data space.

This provides a relative measure of the strength of the
observed change in phenological behavior between any two
years.

A large transition distance at any location indicates a
significant change in the annual phenological cycle between
the initial and final year.



Cluster Transition Distances, 2000–2009



Mountain Pine Beetle in Colorado for (2008− 2003)



Detecting intra-year anomalies

Thus far, we have focused on time evolution of phenostates
between years.

We also look for anomalies within single years.

Looking within regions of homogeneous ecoclimatological
characteristics (NEON domains):

Identify clusters that appear infrequently.
Use principal components classification to identify observations
that do not fit the correlation structure of the data.



NEON Domains



Cluster frequencies: k=50, 2009



NDVI profiles of most abundant phenoclasses (k=50, 2009)

32.61% 15.23% 7.57% 7.20%

6.03% 4.81% 3.69% 3.32%

3.23% 2.48% 2.37% 1.69%



Distribution of most abundant phenoclasses: 90% area (k=50, 2009)

Cluster 49 32.61 % Deciduous Broadleaf Forest

Cluster 20 15.23% Deciduous Broadleaf Forest

Cluster 19 7.57% Deciduous Broadleaf Forest

Cluster 41 7.20% Cropland/Natural veg

Cluster 36 6.03% Deciduous Broadleaf Forest

Cluster 29 4.81% Croplands

Cluster 42 3.69% Croplands

Cluster 45 3.32% Croplands/Natural veg

Cluster 21 3.23% Deciduous Broadleaf Forest

Cluster 43 2.48% Mixed forests

Cluster 3 2.37% Croplands

Cluster 12 1.69% Evergreen needleleaf Forest



NDVI profiles of least abundant phenoclasses (k=50, 2009)

0.0155% 0.0113% 0.0087% 0.0089%

0.0071% 0.0042% 0.0027% 0.0019%

0.0016% 0.0014% 0.0007% 0.00014%



Distribution of least abundant phenoclasses 10% area (k=50, 2009)



Transition Distance Map: Year 2008-2009, K=50



A complementary approach: Principal component analysis

Principal Components Analysis (PCA) determines, for a
p-dimensional data set, an orthogonal set of p new axes (linear
combinations of the original p variables) such that the first axis
explains the greatest variance, the second explains the next most
variance, and so on.

Computed by finding eigenpairs of the covariance matrix

Commonly used to determine dominant patterns in data

But can also be used to determine the anomalous patterns:
Observations that score strongly on low order components do
not follow the correlation structure of the data.



Scores Along Principal Component 1: Year 2008



Scores Along Principal Component 2: Year 2008



Squared Scores, Principal Component 22: Year 2008



Squared Scores, PC 22: Year 2008 (forests only)



Transition Distance Map: Year 2007-2008, K=50



Distribution of least abundant phenoclasses 10% area (k=50, 2008)



Squared Scores, Principal Component 22: Year 2009



Distribution of least abundant phenoclasses 10% area (k=50, 2009)



Transition Distance Map: Year 2008-2009, K=50



Conclusions and Future Work

The combination of geospatiotemporal clustering and principal
components analysis of NDVI time-series data appears
promising:

Large transition distances indicate large departure from
previous phenology.
Infrequent clusters and strong scores on lower-order principal
components identify statistically unusual phenology.

Transition distances excel at identifying high-mortality events
(e.g. fires, storms)

Cluster frequency and PCA techniques can identify less
dramatic declines

Many tasks to pursue in the future:

More validation with ground and aerial surveys
Establish biome-specific thresholds for transition distances, etc.
Build a library of declines attributed specific agents for use in
complementary, supervised classification



Also see...

Friday, 9:30 AM, Moscone West 2008
ABSTRACT FINAL ID: B51P-07
TITLE: Using Land Surface Phenology as the Basis for a National
Early Warning System for Forest Disturbances
SESSION TITLE: B51P. Beyond Earlier Spring: Diverse
Phenological Responses to Climate Across Species and Ecosystems II
AUTHORS: William Walter Hargrove, Joseph Spruce, Steven P.
Norman, Forrest M Hoffman

Friday, 2:40 PM, Moscone West 2008
ABSTRACT FINAL ID: B53D-05
TITLE: An Early Warning System for Identification and Monitoring
of Disturbances to Forest Ecosystems
SESSION TITLE: B53D. Remote Sensing of Long-Term Ecological
Trends
AUTHORS: Aaron A Marshall, Forrest M Hoffman, Jitendra Kumar,
William W Hargrove, Joseph Spruce, Richard T Mills
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