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The USDA Forest Service, NASA Stennis Space Center, and DOE
Oak Ridge National Laboratory are creating a system to monitor
threats to U.S. forests and wildlands at two different scales:

Tier 1: Strategic — An Early Warning System (EWS) that
routinely monitors wide areas at coarser resolution, repeated
frequently — a change detection system to produce alerts or
warnings for particular locations may be of interest

Tier 2: Tactical — Finer resolution airborne overflights and
ground inspections of areas of potential interest — Aerial
Detection Survey (ADS) monitoring to determine if such
warnings become alarms

Tier 2 is largely in place, but Tier 1 is needed to optimally direct
its labor-intensive efforts and discover new threats sooner.
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Overview of the Forest Incidence Recognition and State Tracking (FIRST) System
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Normalized Difference Vegetation Index (NDVI)

NDVI exploits the strong differences in plant reflectance
between red and near-infrared wavelengths to provide a
measure of “greenness” from remote sensing measurements.

NDVI =
(σnir − σred)

(σnir + σred)
(1)

These spectral reflectances are ratios of reflected over
incoming radiation, σ = Ir/Ii , hence they take on values
between 0.0 and 1.0. As a result, NDVI varies between −1.0
and +1.0.

Dense vegetation cover is 0.3–0.8, soils are about 0.1–0.2,
surface water is near 0.0, and clouds and snow are negative.
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MODIS MOD13 NDVI Product

The Moderate Resolution Imaging Spectroradiometer
(MODIS) is a key instrument aboard the Terra (EOS AM,
N→S) and Aqua (EOS PM, S→N) satellites.

Both view the entire surface of Earth every 1 to 2 days,
acquiring data in 36 spectral bands.

The MOD 13 product provides Gridded Vegetation Indices
(NDVI and EVI) to characterize vegetated surfaces.

Available are 6 produces at varying spatial (250 m, 1 km,
0.05◦) and temporal (16-day, monthly) resolutions.

The Terra and Aqua products are staggered in time so that a
new product is available every 8 days.

Results shown here are derived from the 16-day Terra MODIS
product at 250 m resolution, processed by NASA Stennis
Space Center.
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Phenology is the study of periodic
plant and animal life cycle events and
how these are influenced by seasonal
and interannual variations in climate.

FIRST is interested in deviations from
the “normal” seasonal cycle of
vegetation growth and senescence.

NASA Stennis Space Center has
developed a new set of National
Phenology Datasets based on MODIS.

Outlier/noise removal and temporal
smoothing are performed, followed by
curve-fitting and estimation of
descriptive curve parameters.

Up-looking photos of a scarlet oak showing the timing of
leaf emergence in the spring (?).
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Map arithmetic approaches
provide one
straightforward approach.

To detect vegetation
disturbances, the current
NDVI measurement is
compared with the normal,
expected baseline for the
same location.

Substantial decreases from
the baseline represent
potential disturbances.

Any increases over the
baseline may represent
vegetation recovery.

Maximum, mean, or
median NDVI may provide
a suitable baseline value.
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Data Mining for Change Detection

A difficulty with map arithmetic is identification of appropriate
parameters (maximum NDVI, 20% “spring” NDVI, etc.) to
use, since the appropriate choice of parameters may vary by
region and/or type of forest disturbance.

To complement such approaches, we desire an automated,
unsupervised change detection system.

Using high-performance computing, we apply
geospatiotemporal data mining techniques to perform
unsupervised classification based on multiple years of NDVI
history for the entire CONUS.

These classifications use the full volume of available NDVI
data (80GB here) to construct a potential basis for
determining the “normal” seasonal and inter-seasonal
variation expected at a geographic location.

Mills, Hoffman, Kumar, and Hargrove Detection of forest threats via geospatiotemporal data mining



Clustering the MODIS NDVI data

The 19B NDVI values in the data set are arranged as annual
NDVI traces of 22 values, for each grid cell (146.4M records)
in each of the six yearly maps,

The entire set of NDVI traces for all years and map cells is
combined into one 77 GB (single precision) data set of 878
22-dimensional “observation” vectors that are analyzed via
the k-means algorithm.

After applying k-means, cluster assignments are mapped back
to the map cell and year from which each observation came,
yielding six maps in which each cell is classified into one of k
phenoclasses

The phenoclasses form a “dictionary” of representative or
prototype annual NDVI traces (the cluster centroids) derived
from the full spatiotemporal extent of the observations in the
input data set.
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Geospatiotemporal Data Mining
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50 Phenoregions for Year 2009
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50 phenoclass prototypes (cluster centroids)
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The cluster analysis yields six maps, one for each year, that
classify each cell as belonging to one of k phenoclasses (its
cluster membership for that year).

The time evolution of phenoclass assignment, or phenostate,
for every cell in the map indicates a change in the phenological
behavior and ecosystem productivity observed at that location
due to natural or anthropogenic disturbance, forest regrowth,
or ecosystem responses to interannual changes in climate.

Comparison of the current phenostate with the nominal
behavior of “healthy” vegetation indicated by the historical
phenoclass assignment at every location in the CONUS forms
the basis for an early warning system.

One straightforward approach: examine the current
phenostate compared to historical phenostates at a given map
cell, and then flag the present state of a cell as “abnormal” if
the cell has very infrequently or never occupied this state in
the past.
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Cluster Persistence Map (2003–2008)
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Euclidean “transition distance” between phenostates

If k is too large, then the normal seasonal variation in NDVI
will likely result in a different phenostate assignment each
year, leading to many “false positive” commission errors, even
though the different phenostates may, in fact, be very similar.

An alternative approach is to create maps of the “transition
distance” between years, plotting at each map cell the
Euclidean distance between the new and old phenostate
centroids; this distance gives a relative multivariate measure
of how different the observed phenology is between the two
years.
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Maximum Transition Distances for (2003− 2009)
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Mountain Pine Beetle in Colorado for (2008− 2003)
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California Wildfires, 2006–2008
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Okefenokee Bugaboo Scrub Fire, 2007
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Iowa hailstorm damage, 2008–2009
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Other clustering-based approaches

Besides the year to year transition maps, other
clustering-based approaches are possible.

If the level of division, k, is large enough to allow it, very
unusual profiles, which may indicate adverse events, will tend
towards falling into clusters with very few members.

(This, in fact, is how the original data quality issues were
uncovered in the 2007 NDVI product, when with k = 50 we
found clusters that had very few members, all from year 2007.)

Another approach is to look for NDVI traces that are poor fits
to their assigned cluster, as it seems reasonable to expect that
adverse events will have anomalous traces that are far from
the cluster centroid.
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Hurricane damage, 2004–2005
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Conclusions and Future Work

Initial results of geospatiotemporal cluster analysis of phenology
from MODIS NDVI are promising.

The enhanced, accelerated k-means clustering algorithm enables the
analysis of very large, high resolution remote sensing data.

Other, complementary detection algorithms based on singular value
decomposition will also be explored.

Determining “normal” phenological patterns is difficult—due to
interannual climate variability, spatially variable climate change
trend, and relatively short satellite record—mortality events, like
progressive Mountain Pine Beetle damage, are easily detected.

The next step is to establish biome-specific thresholds based on
interannual variability, obtain validation from ADS and ground
surveys, and track and accumulate both loss and new growth for
carbon accounting.

Future work will build a library of phenostate transitions attributed
to pests or pathogens for individual biomes, allowing the system to
hypothesize about causes of future disturbances detected.
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