Carbon Cycle Extremes in the 22nd and 23rd Century and Attribution to Climate Drivers

Bharat Sharma^{1,2}, Jitendra Kumar², Forrest M. Hoffman², Nathan Collier² and Auroop Ganguly¹

¹Northeastern University, ²Oak Ridge National Laboratory

Friday, December 15, 2017

CLIMATE CHANGE SCIENCE INSTITUTE

OAK RIDGE NATIONAL LABORATORY

Sources and Sinks of Carbon Dioxide

Figure 1: Sources and sinks of carbon dioxide, Source : CSIRO 2011, Figure 2.5

Carbon Cycle and GPP

- Due to increasing CO₂ levels, understanding of the CO₂ sinks is necessary.
- ▶ Gross Primary Production (GPP) is a major driver for land sink.
- Extreme events in GPP can significantly affect the CO₂ uptake.

Community Earth System Model Biogeochemistry Working Group, CESM1-BGC

- ▶ 1850-2005: Historical
- ▶ 2006–2100: Representative Concentration Pathway 8.5
- ► 2101–2300: Extended Concentration Pathway 8.5
- Resolution: $0.9375^{\circ} \times 1.25^{\circ}$ (lat x lon)
- Monthly Mean Data
- Constant Land Use: Pre-industrial forcing

- 1. Original signal of GPP at every pixel.
- 2. Calculate annual (seasonality) and decadal+higher signals (trend).
- 3. Anomalies = Original Trend Seasonality
- 4. Select the time period(s) [25 years].
- 5. Thresholds for that time period(s) based on a defined percentile [1.0].
- 6. Global GPP extreme events.

What Qualifies as an Extreme Events?

Figure 3: Thresholds when percentile is 1.0 and time period is 25 years

Spatial Distribution of Frequency of Negative Extremes

Figure 4: Frequency of negative extreme events for 2175–2199, percentile: 1.0

Timeseries of Frequency of Extreme Events

Figure 5: Counts of extremes relative to the threshold of 1850-1999

Global Timeseries of Extreme Events

Figure 6: Global timeseries of extreme events when percentile is 1.0 and time period is 25 years

Changes in Spatial Distribution of Negative Extremes

Changes in Spatial Distribution of GPP

What led to GPP Extreme Events?

The correlation coefficients of GPP anomalies and extremes were computed:

- at every pixel
- ▶ for all 18 25-year time-periods from 1850-2299
- ▶ for prior lags from 0 to 12 months

with original, detrend and anomalies of following climate drivers:

Table 1: Drivers

Prcp	Atmospheric rain $+$ snow
Soilmoist	Soil moisture to 1-m depth
T _{av}	Monthly Mean daily temperature
T _{max}	Monthly Maximum daily temperature
P-ET	Precipitation minus Evapotranspiration
Fire-pft	Total pft-level carbon loss due to fire
Fire	Total column level carbon loss due to fire

What led to GPP Extreme Events?

The correlation coefficients of GPP anomalies and extremes were computed:

- at every pixel
- ▶ for all 18 25-year time-periods from 1850-2299
- ▶ for prior lags from 0 to 12 months

with original, detrend and anomalies of following climate drivers:

Table 2: Selected Drivers

Prcp	Atmospheric rain $+$ snow	Anomalies
Soilmoist	Soil moisture to 1-m depth	Anomalies
Tav	Monthly Mean daily temperature	
Tmax	Monthly Maximum daily temperature	Anomalies
P-ET	Precipitation minus Evapotranspiration	Anomalies
Fire-pft	Total pft-level carbon loss due to fire	
Fire	Total column level carbon loss due to fire	Original

Multi Linear Regression - Spatial Distribution

Case 01 : adjusted r-squared = 0.5813

Figure 7: Spatial distribution of adjusted r-squared for gpp extreme events with percentile 1.0 and for time period 1975–99

Multi Linear Regression - adj. R-squared

Numbers = prior month lags ; X = excluded

Cases	Prcp	Soilmoist	T_{max}	P-ET	Fire	Rsq_adj
Case 1	0	0	0	0	0	0.5813
Case 2	1	1	1	1	1	0.4094
Case 3	2	2	2	2	2	0.3369
Case 4	0	0	0	0	1	0.5531
Case 5	0	0	0	1	0	0.4033
Case 6	0	0	1	0	0	0.5651
Case 7	0	1	0	0	0	0.5768
Case 8	1	0	0	0	0	0.4361
Case 9	0	0	0	0	Х	0.5361
Case 10	0	0	0	Х	0	0.4022
Case 11	0	0	Х	0	0	0.5503
Case 12	0	Х	0	0	0	0.5545
Case 13	Х	0	0	0	0	0.4209
Case 14	0	Х	Х	Х	Х	0.3394
Case 15	Х	Х	Х	0	Х	0.3195
Case 16	0	Х	Х	0	Х	0.4672

Spatial Distribution of Dominant Driver

Dominant Climate Driver

The CESM1-BGC (ecp 8.5) suggests that:

- The intensity of both negative and positive carbon cycle extreme events is increasing with time
- Compared to historic threshold, the frequency of positive extreme events is increasing at higher rate than that of negative extremes
- The slope of absolute total carbon mass from negative extreme events is at least 20% more than from the positive extreme events
- The adjusted R-squared value is highest for zero time lag and all five drivers considered
- ► The P ET anomalies are the most dominant climate driver, followed by Prcp anomalies

- Define spatio-temporal carbon cycle extreme events
- Perform similar analyses with dynamic land use change

This research was performed for the Reducing Uncertainty in Biogeochemical Interactions through Synthesis and Computation Scientific Focus Area (RUBISCO SFA), which is sponsored by the Regional and Global Climate Modeling (RGCM) Program in the Climate and Environmental Sciences Division (CESD) of the Biological and Environmental Research (BER) Program in the U.S. Department of Energy Office of Science. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

Thank you!

- 1. http://www.climatechangeauthority.gov.au/reviews/targets-andprogress-review/global-emissions-budgets-roundtable-and-summary
- 2. https://eo.ucar.edu/kids/green/cycles6.htm
- Zscheischler, J., Mahecha, M. D., Harmeling, S., Reichstein, M. (2013). Detection and attribution of large spatiotemporal extreme events in Earth observation data. Ecological Informatics, 15, 66-73.
- Zscheischler, J., Reichstein, M., von Buttlar, J., Mu, M., Randerson, J. T., Mahecha, M. D. (2014). Carbon cycle extremes during the 21st century in CMIP5 models: Future evolution and attribution to climatic drivers. Geophysical Research Letters, 41(24), 8853-8861.
- Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., ... Papale, D. (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287-295.
- Swann, A. L., Hoffman, F. M., Koven, C. D., Randerson, J. T. (2016). Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences, 113(36), 10019-10024.