Quantifying the Effect of Changes in Climate-Driven Carbon Cycle Extremes on the Terrestrial Carbon Budget through Year 2300

Bharat Sharma^{1,2}, Forrest M. Hoffman², Jitendra Kumar², Nathan Collier² and Auroop Ganguly¹

¹Northeastern University Boston, ²Oak Ridge National Laboratory

Thursday, June 7, 2018

CLIMATE CHANGE SCIENCE INSTITUTE

OAK RIDGE NATIONAL LABORATORY

Global Carbon Budget

growth in the atmosphere, land and ocean. It reflects the limits of our understanding of the carbon cycle.

Source : CDIAC, NOAA ESRL; Global Carbon Budget 2017

-20 1960

1970

1980

1990

2000

2010 2020

1960

1970

1980

1990

2000 2010 2020

Data Source

Community Earth System Model Biogeochemistry Working Group, CESM1-BGC Resolution: 0.9375° X 1.25° (lat x lon) Monthly Mean Data Constant Land Use: Pre-industrial forcing Time Period : 1850 - 2300

Definition of Extreme Events

- 1. Original signal of GPP at every pixel.
- 2. Calculate annual (seasonality) and decadal+ signals (trend).
- 3. Anomalies = Original Trend Seasonality
- 4. Select the time period(s) [25 years].
- 5. Thresholds for that time period(s) based on a defined percentile [1.0].
- 6. Global GPP extreme events.

Negative carbon cycle extremes~ Carbon lossPositive carbon cycle extremes~ Carbon gain

Threshold & Spatial Distribution of Extremes

Frequency of negative extreme events for 2175–2199, percentile: 1.0

Time series of Extreme Events

Counts of extremes relative to the threshold of 1850–1999

Global timeseries of extreme events when percentile is 1.0 and time period is 25 years

Time series of Extreme Events

Global GPP Extreme Events (1850-2100, 2101-2300)

Changing Spatial Distribution of Negative Extremes

Changing Spatial Distribution of Negative Extremes

Attribution

The correlation coefficients of GPP anomalies and extremes were computed:

- At every pixel
- For all 18 25-year time-periods from 1850-2299
- For prior lags from 0 to 12 months

With original, detrend and anomalies of following climate drivers:

Prcp	Atmospheric rain + snow				
Soilmoist	Soil moisture to 1-m depth				
T _{av}	Monthly mean daily temperature				
T _{max}	Monthly maximum daily temperature				
P-ET	Precipitation minus Evapotranspiration				
Fire	Total column level carbon loss due to fire				
SPI	Standard Precipitation Index (γ = 6,12)				
SPEI	Standardized Precipitation-Evapotranspiration Index (γ = 6,12)				

Multi-linear Regression – adj. R-squared

Numbers = prior month lags; X = excluded

Cases	Prcp	Soilmoist	T_{max}	P-ET	Fire	Rsq_adj
Case 1	0	0	0	0	0	0.5813
Case 2	1	1	1	1	1	0.4094
Case 3	2	2	2	2	2	0.3369
Case 4	0	0	0	0	1	0.5531
Case 5	0	0	0	1	0	0.4033
Case 6	0	0	1	0	0	0.5651
Case 7	0	1	0	0	0	0.5768
Case 8	1	0	0	0	0	0.4361
Case 9	0	0	0	0	Х	0.5361
Case 10	0	0	0	Х	0	0.4022
Case 11	0	0	Х	0	0	0.5503
Case 12	0	Х	0	0	0	0.5545
Case 13	Х	0	0	0	0	0.4209
Case 14	0	Х	Х	Х	Х	0.3394
Case 15	Х	Х	Х	0	Х	0.3195
Case 16	0	Х	Х	0	Х	0.4672

Dominant Climate Driver

Conclusions and future work

Conclusions:

- Intensity of both negative and positive carbon cycle extreme events is increasing.
- The rate of increase of negative compare to positive extremes is more by 20% (1850-2300), 50% (2100-2300).
- The changing pattern of extremes over time maybe due to vegetation trends (major loss as in Region A&B).
- The regions that are showing increases in extremes may actually experience large increases in productivity (Region C).
- P ET anomalies is the most dominant climate driver attributed to the negative extremes.

Future Work:

- Analysis using the dynamic land use scenario
- Finer time resolution is needed for attribution analysis
- Look at positive extremes
- Detailed analysis of the regions around Amazon basin

Acknowledgement

This research was performed for the Reducing Uncertainty in Biogeochemical Interactions through Synthesis and Computation Scientific Focus Area (RUBISCO SFA), which is sponsored by the Regional and Global Climate Modeling (RGCM) Program in the Climate and Environmental Sciences Division (CESD) of the Biological and Environmental Research (BER) Program in the U.S. Department of Energy Office of Science. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Thank You!

Bharat Sharma

Northeastern University Boston, Oak Ridge National Laboratory

Sharma.bha@husky.neu.edu