
Mean Total lnd->atm Comm Time

2 4 8 16 32 64 128
Number of Processors

0

2

4

6

8

10

T
im

e
(s

)

IBM Power 4

- SPMD Only

- 4-Way SMP

- 8-Way SMP

CAM2.0.1/CLM2.0

T42L26EUL

720 timesteps

copy/gather/copy/scatter/copy

copy/alltoall/copy

Mean Total atm->lnd Comm Time

2 4 8 16 32 64 128
Number of Processors

0

2

4

6

8

10

T
im

e
(s

) IBM Power 4

- SPMD Only

- 4-Way SMP

- 8-Way SMP

CAM2.0.1/CLM2.0

T42L26EUL

720 timesteps

copy/gather/copy/scatter/copy

copy/alltoall/copy

Mean atmlnd_drv Time to Mean Total stepon Time

2 4 8 16 32 64 128
Number of Processors

10

15

20

25

30

35

P
er

ce
nt

IBM Power 4
- SPMD Only
- 4-Way SMP
- 8-Way SMP
CAM2.0.1/CLM2.0
T42L26EUL
720 timesteps

copy/gather/copy/scatter/copy

copy/alltoall/copy

Mean atm<->lnd Comm Time to Mean Total atmlnd_drv Time

2 4 8 16 32 64 128
Number of Processors

0

10

20

30

40

50

60

70

P
er

ce
nt

IBM Power 4
- SPMD Only
- 4-Way SMP
- 8-Way SMP
CAM2.0.1/CLM2.0
T42L26EUL
720 timesteps

copy/gather/copy/scatter/copy

copy/alltoall/copy

Scaling Physics to Many Processors

The improvement to model performance by scaling to larger processor counts is plotted in terms of
simulation years per day of computation for the IBM p690 (left) and the HP AlphaServer SC (right).
For the mixed MPI/OpenMP experiments, the optimal mix of MPI processes and OpenMP threads was
determined for each total processor count. While the chunk size and load balancing optimizations
improve performance by approximately 30% for 32 processors, the major benefit is in increased
scalability when using OpenMP and more than 32 processors.

Decoupling of the physics and dynamics data structures and parallel algorithms allows the physics to
use more processors than the spectral Eulerian and spectral semi−Lagrangian dycores. These dycores

One approach to improving scalability is to use the same number of MPI processes in the physics and
the dycore, but use additional processors in the physics via OpenMP parallelism.

presently use a one−dimensional decomposition, and consequently can use at most 64 processors at
a T42 horizontal resolution. Moreover, scalability of the dycores is poor when increasing from 32 to 64
processors. In contrast, the physics can now use up to 8192 processors for the same problem size.

❍ To further improve scalability, work is underway to implement a
two−dimensional parallel decomposition into the spectral Eulerian
and spectral semi−Lagrangian dycores which presently use a one−
dimensional decomposition.

Prior to adding this two−dimensional decomposition, the current
decomposition was optimized by

❍

●

●

●

implementing a consistent one−dimensional decomposition in the
spectral data structures,
redefining the decomposition to improve load balancing, and

The overall impact was a significant decrease in communication
overhead, decreasing run time on all systems.

❍

eliminating unnecessary interprocessor communication.

A New Atmosphere/Land Interface

Grid cells on the land surface
arranged into ‘‘clumps’’ for parallel
decomposition and load balancing.

❍

hierarchy, correspond to atmosphere

computational unit for the land called
the ‘‘clump’’ −− an ordered subset of
grid cells distributed among MPI

❍

processes.
●

Land surface grid cells, the highest level of the CLM2 subgrid

❍ The Community Land Model (CLM2) simulates land surface

columns when run with CAM2.

The SciDAC project introduced a new

The computational workload for each
grid cell is proportional to the number of subgrid patches (plant
functional types) contained within the grid cell. To balance the

of grid cells.

processes on a hierarchy of specialized subgrid patches.

A grid cell may not span multiple clumps.●

● Two decomposition strategies:
1.

2.

One clump is created for each MPI process, and the patches
are (nearly) evenly divided among clumps by way of whole
grid cells. This is the default decomposition.
If a suggested number of patches per clump is specified, the
grid will be decomposed into as many clumps as necessary
containing at least that number of patches in terms of whole
grid cells. Clumps are then evenly divided among MPI
processes.

work across all clumps, the clumps consist of a varying number

Spectral Dycore Optimizations

The left figure shows mean communications time from the atmosphere to the land while the right
figure shows the mean communications time from the land to the atmosphere. Dashed curves
represent the old interface; solid curves represent the new interface. Mean total communications
time is significantly reduced in the new interface, and the variance of communications times across
processes is also reduced.

reduces the percentage of total land model run time consumed by communications.
ratio of mean communications time to mean total land model run time. The new interface significantly
run time so that CLM2 represents a smaller percentage of total run time. The right figure shows the
communication time is attributed to the land model, the improved interface reduces total land model
run time. Dashed curves represent the old interface; solid curves represent the new interface. Since
The left figure shows the ratio of mean land model (CLM2) run time to mean full model (CAM2+CLM2)

To gauge performance of the new atmosphere/land interface, tests were run on the IBM Power 4
(p690) at Oak Ridge using CAM2.0.1 with CLM2.0 at T42L26 with the spectral Eulerian dycore.

CAM2/CLM2 Interface Performance

MxN transposition between chunks and clumps

Atmosphere

physics columns
grouped into

chunks

Land Surface
grid cells

grouped into
clumps

❍ A new interface between the atmosphere and the land surface

chunk2clumpTwo new data structures,
clump2chunk provide theand

mapping between the two.

❍

initializeslp_coupling_init()
these data structures, and it
may be called repeatedly to
re−initialize the mapping if the
decomposition of either the
physics or the land changes.

❍

Supports dynamic load balancing!

Atmosphere columns over the ocean are ignored.❍

Multiple MPI gathers and scatters were replaced by a single
MPI_alltoallv()

❍

was implemented to provide an efficient MxN transposition
between physics chunks and land clumps.

before and after the call to the land driver() routine.
❍ After data structures are initialized, no additional computation is

required to perform data exchange via MPI.

❍ The models run in parallel as a single executable, share the same
processors, and exchange surface fluxes and states via MPI.

❍ CLM2 is usually run coupled directly with CAM2.

terms of computational rate. While there is some performance improvement for all processor counts,
as with earlier optimizations, the biggest gains are in scalability for large processor counts. This
indicates that CAM was communication bound for processor counts greater than 32 before these two
optimizations were introduced.

Performance Impacts of Dycore and CLM2 Optimizations

The performance impacts of the dycore optimization and the new land model interface are plotted in

Future Optimization and Development Efforts

For more than 32 processors, the dycore begins to limit CAM2 performance. Dycore performance
stops improving when using more than 64 processors. Implementing a two−dimensional domain
decomposition in the dycore should address this problem.

Up to 32 processors, physics dominates the model performance. Improving the serial performance
of the physics could improve model performance on both the IBM and HP systems. However, there
is also a performance anomaly on the IBM when moving from 128 to 256 processors.

Timings for physics, Eulerian dycore, land model, physics/dycore and CAM2/CLM2 interface routines,
and I/O & physics set−up are shown separately above. The interface routines are dominated by inter−
processor communication and the I/O & physics set−up are dominated by I/O and serial bottlenecks.
❍

❍

❍ While the land scales well enough not to limit the performance of CAM2, additional optimizations
will be made to improve the performance and scalability of CLM2.
Interface routines scale reasonably well on the IBM. When the new IBM Federation switch is
installed, the interface routines should become even less of a performance factor. On the HP, the
performance of the interface routines is a problem. This may be attributable to an inefficient
implementation of the MPI_Alltoallv() collective routine. An alternative implementation will be
examined in an attempt to address this problem on the HP.

library is being developed, and the serial bottleneck in the physics set−up will also be eliminated
in a future modification. Note that the performance on the HP is also affected by the use of other
MPI collective routines that appear to perform poorly. Alternative implementations of these
routines will also be examined.

The I/O & physics set−up routines both have significant serial bottlenecks. A new parallel I/O

❍

❍

Physical Parameterization Optimizations

Vertical columns in the atmosphere

decomposition and load balancing.
arranged into ‘‘chunks’’ for parallel

❍

● Two tuning parameters: number of
columns assigned to a chunk and
number of chunks assigned to MPI
processes.
Each MPI process is assigned at least
one chunk, and OpenMP parallelism
is exploited when more than one
chunk is assigned to an MPI process.

●

Two decomposition strategies:●

1. Use the same parallel decomposition as in the dycore, avoiding
interprocess communication between the physics and dycore.
The chunks are defined to balance the work associated with
each chunk for a given process, thus load balancing any
OpenMP parallelism within an MPI process.

2. Assign columns to chunks to balance the load across all
chunks, and assign the same number of chunks to each

parameterizations (physics) from the dynamical core (dycore) to

❍

support multiple dycores (spectral Eulerian, spectral semi−●

●

The chunk size (i.e., number of columns per chunk) determines
memory access patterns, and can be tuned to the cache size or
vector length of the computer architecture.

❍

Just prior to the SciDAC project, CAM developers chose to
separate the data structures and parallel algorithms of the physical

allow physics and dynamics parallel algorithms to be optimized

processor. Chunk assignment also attempts to minimize the

Lagrangian, and finite volume semi−Lagrangian) and

separately.

columns distributed among MPI processes.
physics called the ‘‘chunk’’ −− an arbitrary subset of vertical
The SciDAC project introduced a new computational unit for the

interprocessor communication in the physics/dycore interface.

The Impact of ‘‘Chunk Size’’ on Performance

The performance of CAM on a 128x64 horizontal grid with 26 vertical levels (T42L26) using 32 MPI

formerly used in CAM. Neither small nor large chunks are optimal, and global load balancing improves
The locally load balanced 128−column chunks are equivalent to the latitude−slice decomposition

processes on a 32−way IBM p690 node (left) and on an HP AlphaServer SC (eight 4−way ES45 nodes)
(right) is plotted as a function of the number of columns per chunk. Results are given for both
globally load balanced chunks (option 1 above) and locally load balanced chunks (option 2 above).

physics and the land model. (The land timings can not be separated from the physics timings due to
load imbalances.)

performance. In addition, performance variation due to chunk size is identical to that of just the

Global Load Balancing versus Interprocessor Communication

In these figures, the time spent in the bc_physics routine is plotted (top curves) along with the time

processor communication (bottom curves), for each of 32 MPI processes on the IBM p690 (left) and

represents all of the physics load imbalance. While the global load balancing algorithm is not perfect,
the HP AlphaServer SC (right). Time spent in bc_physics is 90% of the time spent in physics and

spent moving data between the physics and the dycore, which includes any necessary inter−

it decreases the range of variability by more than a factor of four in these experiments. The additional
time spent moving data when using the global load balancing algorithm (bottom curves) is
measurable, but the improvement due to global load balancing greatly outweighs this cost. This
difference is a function of interprocessor communication performance, and a different result may
hold on another architecture or for a different processor count or problem size.

Community Atmospheric Model (CAM2) and the Community Land Model (CLM2). Such improvements
take two forms: 1) modifications that improve performance in all configurations on all platforms, and
2) compile− or run−time options that can be used to improve performance for a specific platform,
processor count, or problem size. Since the inception of the project 18 months ago, significant
progress has been made in both areas. Described here are performance impacts of improvements

implementation of a new interface between CAM2 and CLM2. Performance results are shown for
the IBM p690 cluster at Oak Ridge National Laboratory and the HP AlphaServer SC ES45 cluster at
Pittsburgh Supercomputer Center.

One of the goals of the SciDAC project ‘‘Collaborative Design and Development of the Community
Climate System Model for Terascale Computers’’ is to improve the performance portability of the

Introduction

to the physical parameterizations and the spectral Eulerian dynamical core as well as the

P. H. Worley, F. M. Hoffman, M. Vertenstein*, and J. B. Drake
Oak Ridge National Laboratory and *National Center for Atmospheric Research

Recent Performance Improvements in the Community Atmospheric Model (CAM2)

