Evaluations of Terrestrial Biogeochemical Feedbacks of Stratospheric Geoengineering Strategies

Cheng-En Yang

The University of Tennessee Oak Ridge National Laboratory

Collaborators: Forrest Hoffman, Simone Tilmes, Jadwiga Richter, Ben Kravitz, Douglas MacMartin, Michael Mills, Joshua S. Fu, Lili Xia, Katie Dagon

June 7, 2018

Geoengineering

"... artificially enhancing earth's albedo and thereby cooling climate by adding sunlight reflecting aerosol in the stratosphere ... additionally counteract the climate forcing of growing CO₂ emissions." – *P. J. Crutzen (2006)*

- Strategies to deliberately offset the increasing radiative forcing due to anthropogenic emissions
 - Carbon dioxide removal (CDR)
 - Solar radiation management (SRM)

Geoengineering

"... artificially enhancing earth's albedo and thereby cooling climate by adding sunlight reflecting aerosol in the stratosphere ... additionally counteract the climate forcing of growing CO₂ emissions." – *P. J. Crutzen (2006)*

- Strategies to deliberately offset the increasing radiative forcing due to anthropogenic emissions
 - Carbon dioxide removal (CDR)
 - Solar radiation management (SRM) \rightarrow no CO₂ control

Geoengineering Projects

- SO_2 injection
 - Single point on the equator at 0° longitude
 - Distributed through the altitude range 16-25 km
 - 2020–2069
 - Abrupt termination at 2070

Geoengineering Projects

- \circ SO₂ injection
 - Single point on the equator at 0° longitude
 - Distributed through the altitude range 16-25 km
 - **2020–2069**
 - Abrupt termination at 2070

- Uneven cooling between the poles and equator
 - Overcooling of the tropics and undercooling of the poles
 - Shifts in tropical precipitation
 - Continued Arctic summer sea-ice loss

(Kravitz *et al.*, 2011)

Geoengineering Projects

Geoengineering Impacts

- Reduced global mean surface temperature warming
- Suppressed precipitation
- Slower hydrological cycle
- Ocean acidification
- Higher photosynthesis rate
- Higher net primary production (NPP)

Science Questions

- Responses of the terrestrial ecosystem to geoengineering
 - Will land remain a carbon sink?
 - Will every region undergo the same biogeochemistry (BGC) feedbacks?
 - Quantification of the carbon sink strength

Analytical Methods

**	Data	Model	RCP	Geoengineering	Note
	GeoMIP G3	HadGEM2-ES	4.5	2020–2069	2070–2089 post-geoengineering
	GLENS	CESM1-WACCM	8.5	2020–2099	3 of 20 ensemble members

*	Regions	Γ	[–] NH polar (NHP)	90N
	0		NH midlatitude (NHM) NH subtropics (NHS)	60N - 35N - 23.5N -
	Global (GLB)	4	Tropics (TRP)	
			SH subtropics (SHS) SH midlatitude (SHM)	23.5S - 35S - 60S -
			_ SH polar (SHP)	90S
				180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 18

Surface Temperature

Ice melting due to uneven cooling

Surface Temperature

Precipitation

mm dav

mm day

1.2

0.8

0.4

1.6

2

Reduced precipitation

- Cooler temperature
- Aerosol indirect effect
- Increasing precipitation in South America due to reduced dryness (cooler temperature)

Surface Temperature

Precipitation

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2

Surface Shortwave Radiation

Surface Temperature

Precipitation

Surface Shortwave Radiation

Reduced cloudiness at high latitudes

Gross Primary Production (GPP)

✦Higher GPP in the Tropics

• Increased diffuse light

- Lower GPP in high latitudes
 - Reduced SW
 - Cooler surface temperature

kgC m^{*} yr kgC m⁻² yr feedback - control

0.2

Significant increase at 60°N

- Land use change?
- **Reduced heterotrophic** respiration?

Reduced carbon sink in G3

Gross Primary Production (GPP)

Carbon in soil

- Similar spatial pattern as GPP in G3 (higher production)
- More litter in GLENS as a result of reduced production
 → reduced carbon in vegetation expected

Carbon in Soil

GLB Terrestrial Ecosystem Responses

GLB Terrestrial Ecosystem Responses

TRP Terrestrial Ecosystem Responses

TRP Terrestrial Ecosystem Responses

NHP Terrestrial Ecosystem Responses

GeoMIP

GLENS

NHP Terrestrial Ecosystem Responses

GeoMIP

GLENS

Summary

- Responses of the terrestrial ecosystem to geoengineering
 - Remaining a *carbon sink*
 - G3: +24 ppm CO₂ equivalent
 GLENS: +47 ppm CO₂ equivalent
 - Fast BGC feedbacks return to RCP 4.5 conditions after sudden termination of geoengineering (G3)
 - Different RCP scenarios and aerosol injection strategies lead to different feedbacks
 - G3: <u>weakened carbon sink strength</u> in most regions except NHP
 - GLENS: <u>enhanced carbon sink strength</u> in most regions except TRP and SHM

Summary

- Climate forcing CO₂ concentration
 - Same CO₂ fertilization effect on BGC feedbacks between RCP8.5 and Feedback runs
 - \implies Simulations driven by CO₂ emissions
- Less aerosol injection is required when accounting for BGC feedbacks
- More analysis required for GLENS runs
- Ocean BGC feedbacks are not yet considered
- Future comparison of GeoMIP for CMIP6 models

Geoengineering Large Ensemble (GLENS) Project

Surface Temperature Change in 2075-2095 compared to 2010-2030

Without Geoengineering

With Geoengineering

-10 -8 -6 -4 -2 0 2 4 6 8 10 2m Temperature (K)

Looking for community engagement to evaluate impacts & understand processes

Core Team: Simone Tilmes (NCAR), Yaga Richter (NCAR), Ben Kravitz (PNNL) Doug MacMartin (Cornell University), Michael Mills (NCAR)

http://www.cesm.ucar.edu/experiments/cesm1.2/GLE/

Acknowledgements

Cornell University.

Thank You

Question?