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Abstract. Photosynthesis plays an important role in car-
bon, nitrogen, and water cycles. Ecosystem models for pho-
tosynthesis are characterized by many parameters that are
obtained from limited in situ measurements and applied to
the same plant types. Previous site-by-site calibration ap-
proaches could not leverage big data and faced issues like
overfitting or parameter non-uniqueness. Here we developed
an end-to-end programmatically differentiable (meaning gra-
dients of outputs to variables used in the model can be ob-
tained efficiently and accurately) version of the photosyn-
thesis process representation within the Functionally Assem-
bled Terrestrial Ecosystem Simulator (FATES) model. As a
genre of physics-informed machine learning (ML), differen-
tiable models couple physics-based formulations to neural
networks (NNs) that learn parameterizations (and potentially
processes) from observations, here photosynthesis rates. We
first demonstrated that the framework was able to correctly
recover multiple assumed parameter values concurrently us-
ing synthetic training data. Then, using a real-world dataset
consisting of many different plant functional types (PFTs),
we learned parameters that performed substantially better
and greatly reduced biases compared to literature values. Fur-
ther, the framework allowed us to gain insights at a large

scale. Our results showed that the carboxylation rate at 25 ◦C
(Vc,max25) was more impactful than a factor representing wa-
ter limitation, although tuning both was helpful in address-
ing biases with the default values. This framework could po-
tentially enable substantial improvement in our capability to
learn parameters and reduce biases for ecosystem modeling
at large scales.

1 Introduction

Plant photosynthesis is critically important for regulating
the global carbon and nutrient cycles, and thus the future
climate. Understanding future climate trajectories requires
understanding photosynthetic responses to changes in en-
vironmental factors including atmospheric CO2 concentra-
tions, radiation, temperature, humidity, and nutrient and wa-
ter availability (Kirschbaum, 2004). Photosynthesis is in-
fluenced by many factors such as higher CO2 levels, re-
duced productivity of vegetation (i.e., nutrient concentration;
Thompson et al., 2017), intensified droughts (Urban et al.,
2017; Xu et al., 2019), and rising temperatures (Dusenge
et al., 2019) under a changing climate. To comprehensively
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evaluate the impacts of these changing processes and vegeta-
tion feedback to the atmosphere, we need accurate represen-
tations of photosynthesis in our models.

For global assessments of the carbon cycle, vegetation
models were developed to simulate terrestrial ecosystem pro-
cesses and the distributions of vegetation, both vertically
in the soil–plant system and horizontally across the land-
scape. Substantial efforts over the last few decades have im-
proved the representation of vegetation and its responses and
feedback to climate change (Fisher et al., 2018). A typical
framework structure for vegetation models is to keep track
of changes in carbon and optionally nutrient states, driven
by climatic variables and modulated by soil properties, with
feedback to the climate, e.g., CO2 releases, radiation, and
vegetation composition and structure. A core component of
the vegetation module is photosynthesis (Quillet et al., 2010).

Present ecosystem models for photosynthesis are based
primarily on mechanistic descriptions of plant photosynthe-
sis pathways, but this theoretically sound modeling paradigm
faces many challenges, with parametric uncertainty being a
major one. Photosynthesis models may describe limitations
of carboxylation rates, light availability, and plant-specific
factors like enzyme efficiencies for C3 and C4 plants differ-
ently (Farquhar et al., 1980; Farquhar and Caemmerer, 1982;
Meyer, 1983; Von Caemmerer, 2003, 2013; Yin and Struik,
2009). They contain many parameters that quantify these ef-
ficiencies and limitations. In the past, these parameters have
been estimated from different approaches: (1) obtained from
a limited set of in situ sites and scaled based on climate and
environmental factors (Verheijen et al., 2013), (2) calibrated
on observational data site by site or for a few sites for a spe-
cific plant functional type (PFT; Mäkelä et al., 2019; Wang
et al., 2014), or (3) optimized based on environmental con-
ditions (Ali et al., 2016). However, these estimated values
may not be optimal at the global scale. Site-by-site calibra-
tions using genetic or similar algorithms are highly expensive
and are limited in their spatial coverage and generalizability
to different PFTs and species. Furthermore, such calibration
faces the issue of nonuniqueness (which some call equifinal-
ity; Beven and Freer, 2001), where different parameter sets
produce the same outcome. As a result, calibration can easily
lead to poorly generalizable parameter values. This problem
exists for many domains with diverse parameters, including
ecosystem modeling (Tang and Zhuang, 2008). It has been
similarly found in hydrologic modeling and has troubled sci-
entists there for decades (Beven, 2006). More recently, it has
been possible for some parameters to be fitted directly from
large datasets with directly measured parameter values (Luo
et al., 2021), which is highly valuable but is limited to those
parameters with extensive observations, e.g., soil water re-
tention and hydraulic properties. An efficient way to permit
large-scale inverse modeling is needed.

There has been substantial progress in utilizing modern
machine learning (ML) for geosciences. Purely data-driven
deep learning models (LeCun et al., 2015; Reichstein et al.,

2019; Shen, 2018; Shen et al., 2018) directly learn from data
so they tend to be fairly accurate, and many have outper-
formed traditional models for a large number of applications
across domains such as hydrology (Feng et al., 2020, 2021;
Rahmani et al., 2020, 2021; Liu et al., 2023; Wunsch et al.,
2021; Fang and Shen, 2020), agriculture (ElSaadani et al.,
2021; Hossain et al., 2019; Liu et al., 2022; Saleem et al.,
2019), energy balance (Zhu et al., 2021), cryosphere (Leong
and Horgan, 2020; Zhang et al., 2019), water quality (Hrn-
jica et al., 2021; Zhi et al., 2021; Saha et al., 2023; Zhi et al.,
2023), and ecosystem modeling (Zhang et al., 2020, 2021). In
particular, the loss function is defined on all data points and
sites, enforcing stronger constraints and leading to the data
synergy effect, where the model gains better performance
as the amount of training data increases (Fang et al., 2022).
Unfortunately, deep learning models also lack interpretabil-
ity and process clarity, and can only output trained variables
with extensive observations. This need for data is often not
satisfied for ecological processes.

To aid geoscientific models in general, Tsai et al. (2021)
presented an efficient framework known as differentiable
parameter learning (dPL), in an effort to leverage recent
progress in ML to mitigate the issues with parameter inver-
sion discussed above. This framework turns parameter es-
timation into a large-scale ML problem. It is mainly com-
posed of a parameter estimation module based on a neural
network (NN), combined with a process-based model (PBM)
or its surrogate. The whole framework must be “program-
matically differentiable” (Baydin et al., 2018; Innes et al.,
2019), which refers to a programming paradigm that can
efficiently and accurately obtain the gradients of the out-
puts with respect to any of the variables used in the model
(Shen et al., 2023). Once we have programmatic differen-
tiability, dPL can efficiently learn unknown functions from
big data to serve as either a parameterization or process
representation. Tsai et al. (2021) found that this framework
scales well with more data, produces spatially and tempo-
rally well-generalized parameter sets, extends well to uncal-
ibrated variables, and saves orders of magnitude in compu-
tational time. Feng et al. (2022a) further showed that a dif-
ferentiable process-based hydrologic model with dPL could
approach the performance of a purely data-driven ML model,
and potentially outperform ML in data-sparse regions (Feng
et al., 2022b). These successes can be conveniently migrated
to the ecosystem modeling domain.

Here, we applied the dPL framework to the leaf-scale
photosynthesis module of the Functionally Assembled Ter-
restrial Ecosystem Simulator (FATES) model. FATES is an
ecosystem model that describes coexistence and competi-
tion in PFTs (Koven et al., 2020). FATES can be used as an
ecosystem module in the Community Land Model (CLM;
Oleson et al., 2013; Lawrence et al., 2019) to represent
ecosystem demography (Fisher et al., 2015). The photo-
synthesis module is based on the Farquhar photosynthesis
model. To apply the dPL framework in our study, we first
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reimplemented the photosynthesis module from FATES so
that it became programmatically differentiable. Second, we
connected this model to NNs for parameter estimation. With
this tool, we aimed to answer the following questions.

1. Are parameters like Vc,max25 and soil water limitation
factor simultaneously identifiable?

2. What is the achievable model performance, in terms of
predicting photosynthesis rates in space and time, by
tuning the parameters for the classical photosynthesis
module without changing the model structure?

3. Are parameters learned from a large global dataset sim-
ilar to the values used in current models?

In the following, we first describe the photosynthesis model
with different parameter estimation experiments and target
datasets. We then discuss the parameters chosen to be esti-
mated and their significance. Afterward, we present the re-
sults from synthetic experiments and experiments based on
real datasets from sites around the globe. Finally, we com-
pare the learned parameters to values from the literature and
provide some suggestions for future work.

2 Methods and datasets

2.1 General overview

Our general framework trains connected NNs to provide
parameters (and later process representations) to PBMs, in
this case the photosynthesis module of the FATES ecosys-
tem model, on all the training data points simultaneously
(Fig. 1a). The NNs map from some raw inputs to some tune-
able physical parameters (θ ; later extensible to processes) re-
quired for the PBM. The predicted physical parameters are
then fed into the differentiable PBM along with other re-
quired forcing variables (F ) and untuned constant attributes
(θc) to compute the simulated target variable (ysim), which is
compared with observations to compute a loss function. The
forward run starts from the NN inputs and ends at the loss
function (following the blue arrows in Fig. 1a); the model’s
goal is to minimize the output of the loss function. We then
backpropagate the errors (shown by black arrows in Fig. 1a)
through the PBM equations back to the NNs so we can train
them using gradient descent. To support gradient-based train-
ing, the entire framework must be differentiable (Shen et al.,
2023), which ensures that neither the NN nor the PBM is a
black box – they both allow explicit inspection and modifica-
tion of the internal structures. Thus, the photosynthesis mod-
ule of FATES had to be reimplemented on a differentiable
platform.

In this case, the PBM is the photosynthesis module in
FATES, which can be written as a nonlinear system of equa-
tions, and its solution is implicit. The system can be written

as

f (x; θ,θc, F )= 0; y = h(x, θ, θc, F ), (1)

where f represents the physical system constraint, h is an
observation operator, x represents the unknowns of the equa-
tions (in this case the intercellular leaf CO2 partial pressure,
Pa), y is an observable variable (in this case net photosyn-
thetic rate, µmol m−2 s−1) that is dependent on x via h, F
represents some meteorological forcing variables such as ra-
diation and air temperature, θ represents a list of tuneable
physical parameters, and θc represents untuned constant at-
tributes. Given a set of θ with known θc and F , we need to
solve for x from f and send the solution into h to further
compute y: y = h

(
f−1 (θ,θc,F ),θ,θc,F

)
.

This whole workflow can be lumped into one model:

y = δpsn (θ,θc, F ) (2)

where δpsn represents the overall photosynthesis model.
Some of the tuneable parameters are typically formulated as
being PFT dependent (e.g., the maximum carboxylation rate
at 25 ◦C, Vc,max25), where each PFT includes groups of plant
species that share similar physical and phenological charac-
teristics leading to similar interactions with the environment.
Other tuneable parameters are related to soil water availabil-
ity (e.g., soil water stress parameters). We posit that there ex-
ists a parameterization scheme, θ = gW (R), which is a map-
ping relationship of some underlying attributes R (e.g., soil
attributes and plant traits) with the physical parameters rep-
resented by NN g with W learnable weights. Thus, we can
learn W so that the simulated variable y matches the obser-
vations y∗:

W = argminW (L
(
δpsn

(
gW (R),θc,F

)
,y∗

)
), (3)

where L is the loss function. For the purpose of solving the
inverse problem and training the NN gW in an “online” mode
using gradient descent (the only practically employed algo-
rithm for NN training), we reimplemented the photosynthe-
sis module in FATES onto two differentiable platforms: Julia
and PyTorch (discussed in more detail below).

In order to test the learning capability of our framework
and the identifiability of the parameters, we first ran synthetic
experiments to verify if the model would be able to correctly
retrieve assumed values for the physical parameters. Second,
using a dataset with thousands of photosynthesis rate mea-
surements, we trained the differentiable model to obtain esti-
mated parameters at the global scale, and compared them to
the literature.

2.2 The Farquhar photosynthesis model

The FATES photosynthesis module is based on the classi-
cal Farquhar model for C3 plants (Farquhar et al., 1980),
which calculates the photosynthetic rate based on carbon
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Figure 1. Diagram showing the dPL framework, which is a hybrid of NNs and the photosynthesis module in the FATES ecosystem model
written on a differentiable platform. (a) The generic workflow: some raw information is mapped into physical parameters via an NN. These
parameters are sent into a PBM, which then outputs the simulations, ysim, that are compared with the observations, yobs. Direct supervision
for the physical parameters themselves is not required – we do not need ground truth values for these parameters. The loss function is “global”
in that it involves all training data points, rather than being computed site-by-site as done in traditional calibration. (b) The workflow for
the computational example described in this work. We estimate either Vc,max25 or the parameter B, or both of them at the same time, using
NNs. The parameters are then fed into the differentiable photosynthesis module in FATES, which then outputs the net photosynthesis rate,
An(sim), that is compared with An(obs). When not estimated from the data, default values from the literature were used. Blue arrows show
the running of the NNs with the PBM in a forward (“prediction”) mode, while black arrows indicate backpropagation from the loss function
back through the differentiable model equations to the NNs to update their weights, which is only done during initial NN training.

fluxes under different limitations. For C4 plants, it uses the
Collatz model (Collatz et al., 1992). Both models assume
that the gross photosynthetic rate is affected by the maxi-
mum rate of carboxylation and is limited by the concentra-
tion of RuBP carboxylase (Rubisco; Ac), light and electron
transport (Aj), and the concentration of PEP carboxylase en-
zyme in C4 plants (Ap). The final gross photosynthetic rate
“A” is calculated using the empirical curvature parameters
(θcj and θip), while the net photosynthetic rate An is the same
as the gross rate (A) after the plant respiration rate (Rd ) is
subtracted. The system can be described succinctly as the fol-
lowing, with Eqs. (4) and (5) playing the roles of f and h in
Eq. (1), respectively; the whole set of associated equations is
detailed in Fig. 2 and Appendix A.

Ci = Ca−AnPatm
(1.4gs+ 1.6gb)

(gs× gb)
, (4)

An = A(Ci)−Rd . (5)

Equation (4) is a single-variable nonlinear equation, with the
intercellular leaf CO2 pressure (Ci) as the unknown term to
be solved (serving as the x term in Eq. 1). Ci is influenced by
the CO2 partial pressure near the leaf surface (Ca), the net
photosynthetic rate (An), the atmospheric pressure (Patm),
the leaf stomatal conductance (gs), and the leaf boundary
layer conductance (gb). Upon solving for Ci, we can further

calculate An, which is the y term in Eq. (1). In the original
implementations of FATES and CLM, the system of nonlin-
ear equations was solved iteratively using fixed-point itera-
tion (Oleson et al., 2013).

In order to train the physical equations and NNs together
using gradient descent, the above equations were imple-
mented on differentiable platforms to support backpropa-
gation. We developed two alternative implementations: us-
ing PyTorch in Python (Paszke et al., 2019) and using Julia
(Bezanson et al., 2012). The PyTorch version solves the cou-
pled nonlinear equations using our parallel implementation
of Newton iteration with automatic differentiation, while the
Julia version uses adjoint-based methods implemented via a
symbolic computer algebra system and is compatible with
a wide variety of nonlinear solvers (Gowda et al., 2022).
In contrast to the previous fixed-point iteration used by the
original FATES model, our PyTorch Newton iteration solver
can run on a graphical processing unit (GPU) in parallel for
many sites. Newton’s iteration method features second-order
convergence compared to the slower convergence of fixed-
point iteration, while GPU parallelism represents orders-of-
magnitude savings in computational time compared to the
original algorithm in FATES. The photosynthesis problem
studied here has only one unknown (Ci) even though there
are many other supporting equations, but we have success-
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fully tested other larger nonlinear systems. Altogether, we
can train this model with the coupled NNs for hundreds of
data points in under 10 min (typically in 600 iterations) and
could also train the model on 10 000 data points. For fu-
ture work where time steps are involved, the adjoint method
will likely be employed to reduce GPU memory use during
nonlinear iterative solving. For the Julia implementation, the
symbolic toolbox ModelingToolKit.jl (Gowda et al., 2022;
Ma et al., 2022) was employed to automatically generate the
solution scheme as Julia code, and along with solvers from
NonlinearSolve.jl, solve the system of equations in the for-
ward problem. Presently, we have implemented the Julia ver-
sion in serial mode only. Results presented in this paper were
produced using the PyTorch version, although the computa-
tional results were the same with the Julia version. Hence,
we think both versions have value for future effort.

2.3 The parameterization pipeline and model changes

We used multilayer perceptron (MLP) NNs as the parame-
terization module g in Eq. (3). The purpose of the MLPs is
to estimate parameters θ , which are then fed into the photo-
synthesis module to obtain the net photosynthetic rate (An;
Appendix A). The MLPs were trained based on minimiza-
tion of the loss function – in brief, the goal is to minimize
the difference between the solved and observed values ofAn.
As described in Eq. (2), the whole workflow is hereafter re-
ferred to as the δpsn model (“delta-photosynthesis model”;
the Greek letter δ is selected because the model is program-
matically differentiable and δ is often associated with gradi-
ents). There may be multiple MLPs used to estimate different
parameters in θ , each with different inputs of either continu-
ous or categorical data, and they can all be trained together.
Figure 1a shows the general framework for parameter esti-
mation experiments and panel (b) shows the framework of
this particular work.

We chose to estimate one or both of two specific parame-
ters in our experiments. The first one is the plant maximum
carboxylation rate at 25 ◦C (Vc,max25), which is normally for-
mulated as a PFT-dependent parameter. Although Vc,max25
is hypothesized to be PFT dependent, recent studies have
shown that the parameter can vary in space and time and by
different species in the PFT as well (Ali et al., 2015; Chen et
al., 2022; Qian et al., 2019). Estimating Vc,max25 is not a triv-
ial matter due to its high variability and sensitivity to differ-
ent factors such as drought, leading some studies to suggest
a substitute. For example, Croft et al. (2017) suggested using
leaf chlorophyll content as a direct proxy for Vc,max25. Never-
theless, considering this is an initial study applying dPL, we
followed the convention and parameterized it based on PFT:

Vc,max25 = NNV (PFT), (6)

where PFT is the plant functional type category (in one-hot
encoding format, which translates each category to a binary

vector) and the NN used for parameterization of Vc,max25 is
referred to as NNV hereafter.

The second parameterization is for parameterB defined by
Clapp and Hornberger (1978), which influences the soil wa-
ter stress function (βt, where the subscript t indicates tran-
spiration). βt, called “btran” in the CLM code, reflects the
impacts of soil wetness on stomatal conductance and ranges
from zero (extreme dry conditions causing stomata closure)
to one (wet conditions with stomata fully open). In the fol-
lowing, we describe B and βt computations as in CLM4.5
(Oleson et al., 2013). B is purely a function of soil proper-
ties and is defined for each soil layer as Bi , where i refers
to the soil layer (see Appendix B). Bi equations will later be
replaced by our NN-based parameterization scheme as ex-
plained in Sect. 2.3.1 because they were originally empirical
and may not be optimal at the global scale. B comes into play
when calculating the soil water potential ψi using a power-
law formulation:

ψi = ψsat,i × S
−Bi
i ≥ ψc, (7)

where ψsat,i is the saturated soil matric potential and Si is the
soil wetness, both defined for a specific soil layer (see Ap-
pendix B for detailed calculations). The plant wilting factor
(wi) is then calculated using ψi and other PFT-dependent pa-
rameters (defined in CLM4.5) such as the soil matric poten-
tials for closed stomata ψc and open stomata ψo, which rep-
resent the soil water potentials when stomata are fully closed
and fully open, respectively, as defined in Eq. (8). The factor
wi is also dependent on other factors like the temperature of
the soil layer (Ti) relative to the freezing temperature (Tf),
the volumetric liquid water content (θliq), the volumetric ice
content (θice), and the volumetric water content at saturation
(θsat). In our calculations, θice was ignored since both the leaf
and the air temperatures in our dataset were above freezing
(0 ◦C or 273.15 K) by at least 5 ◦C.

wi =



ψc−ψi
ψc−ψo

[
θsat, i−θice, i

θsat, i

]
≤ 1;

Ti > Tf− 2 and θliq,i > 0

0;
Ti ≤ Tf− 2 or θliq,i ≤ 0


. (8)

Finally, βt can be calculated by aggregating the plant wilting
factor (wi) and plant root distribution (ri) across different soil
layers based on the PFT as

βt =
∑
i

wiri . (9)

2.3.1 Model changes

In the original water limitation function in CLM4.5, the
stomata response to soil water potential is based on a linear
function between the water potential for stomata openness
and closedness (see Eq. 8). In light of the possibility that
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Figure 2. Model equations corresponding to f and h in Eq. (1). Blue boxes indicate equations corresponding to f . Yellow boxes indicate
equations corresponding to h. First, we obtain a solution forCi (intercellular leaf CO2 pressure) by solving the nonlinear system (f equations)
as illustrated in the last (bottom) blue box. Then, we run the h equations forward to compute An (net photosynthesis rate) using Ac, Aj, and
Ap as discussed in Sect. 2.2. Details about different variables and parameters included in the f and h equations are provided in Appendix A.

plants could respond differently to soil water potential de-
pending on plant hydraulic traits (Christoffersen et al., 2016),
in this study, we modified the soil water limitation for PFTs
so that they could have different shapes. Specifically, we de-
fined PFT-dependent soil water stress, ψi(PFT) ranging from
ψc and ψo, depending on the soil water content, which is cal-
culated as follows:

ψi(PFT)= ψo× S
−Bi (soil,PFT)
i ≥ ψc. (10)

Bi is a PFT- and soil-texture-dependent shape parameter (be-
tween 0 and 1) estimated as

Bi = NNBi (%sandi,%clayi,Fom,i,PFT), (11)

where %sandi , %clayi , and Fom,i respectively represent the
percentage of sand, the percentage of clay, and the fraction of

organic matter in soil layer i. The PFT-dependent soil water
stress, ψi(PFT), is then fed into the plant wilting Eq. (8) as
follows:

wi =
ψc−ψi(PFT)
ψc−ψo

=

ψc−maxψ
(
ψc,ψo× S

−Bi (soil,PFT)
i

)
ψc−ψo

≤ 1. (12)

The new shape parameter Bi in Eq. (11) has a different range
(between 0 and 1) from the original one defined by Clapp
and Hornberger (1978) in Eq. (7), and it varies spatially for
different static attributes and for different PFTs as well. The
default equations in CLM4.5 for computations of Bi (Ap-
pendix B) show that the parameter Bi depends on two at-
tributes, %clayi and Fom,i , which is why they were used in
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NNBi . To account for the dependence of ψsat,i on %sandi
(Appendix B) and its replacement by ψo (see Eqs. 7 and
10), %sandi was also added to NNBi . We also added PFT
to NNBi inputs because vegetation may interact with the soil
moisture constraint and we want to allow relevant factors to
be included, rather than restricting the list of inputs to what
was previously used in the literature. Since in NNBi we use
quantitative inputs (%sandi , %clayi,Fom,i) along with cat-
egorical inputs (PFT), we used the embedding layer in Py-
Torch, which translates each category to a vector of quantita-
tive variables. This categorical data can then easily be com-
bined with other quantitative inputs we provide to our NN.

Using the original Eq. (7) for computing ψi resulted in a
plant wilting factor, wi , equal to one for more than 90 % of
the data points across different soil layers. Changing Eq. (7)
to the form shown in Eq. (10) helped to express more vari-
ability in wi and eventually in the computed soil water stress
function (βt).

2.4 Input and observation datasets

2.4.1 Forcing and photosynthesis rates

For meteorological forcings, we used the ERA5 Reanalysis
dataset (Muñoz Sabater, 2019), which provides hourly esti-
mates of soil moisture at different soil depths. Soil moisture
contributes to the computation of βt (see Appendix B), where
the soil wetness S depends on both the soil moisture and the
saturated soil moisture.

For observations of photosynthesis, we used data from the
leaf gas exchange database (Knauer et al., 2018; Lin et al.,
2015), which is a global database of stomatal conductance
measurements and leaf-level photosynthetic rates. It incor-
porates data from several sites around the world in Australia,
Europe, USA, and Asia (Fig. 3). We refer to this dataset as
Lin15 throughout the rest of this work, with 43 sites cho-
sen whose dates and times of measurements were available.
Lin15 covered nine different PFT categories: rainfed crop
“Crop R”, Broadleaf evergreen tree tropical “BET Tropi-
cal”, Broadleaf evergreen tree temperate “BET Temperate”,
C3 grass, C4 grass, Needleleaf evergreen tree boreal “NET
Boreal”, Needleleaf evergreen tree temperate “NET Temper-
ate”, Broadleaf deciduous tree temperate “BDT Temperate”,
and Broadleaf deciduous shrub temperate “BDS Temperate”.
Measurements were taken on the sub-hourly scale but not
necessarily at a continuous daily interval. That is why for al-
most all the sites, data were available on some random days
(not necessarily continuous) for one or a few years.

Lin15 also contained forcing variables, including air tem-
perature (T ), leaf temperature (Tv), atmospheric pressure
(Patm), relative humidity (RH), photosynthetic active radi-
ation (ϕ) and boundary layer conductance (gb). We used
ERA5 to fill in for any missing forcing variables in Lin15.
In Eq. (4), Patm and gb were used directly from the dataset,
while Ca was estimated using observations of the leaf surface

CO2 concentrations, and gs was calculated using the Medlyn
conductance model (Medlyn et al., 2011) as explained in Ap-
pendix A.

2.4.2 Static attributes

For βt calculations, we used data from Hengl and
Wheeler (2018) for the soil organic carbon content at differ-
ent soil depths, where the conventional Van Bemmelen fac-
tor of 1.72 was used to convert to soil organic matter (Fom).
Data for sand and clay percentages (%sand, %clay) were ob-
tained from Hengl (2018). Both are global datasets available
at 250 m resolution at six different soil depths (0, 10, 30, 60,
100, and 200 cm), which describe five soil layers.

2.4.3 CLM4.5 default parameters

CLM4.5 documentation (Oleson et al., 2013) provides ref-
erence values for comparison and equations for both target
parameters Vc,max25 and B. For Vc,max25, default values cor-
responding to each PFT (shown in Table 3) are well docu-
mented in CLM4.5 (Chap. 8; Table 8.1). Similarly, for pa-
rameters B and βt, their default equations (shown in this
work in Appendix B) are provided in the documentation of
CLM4.5 as well. We also used other PFT photosynthetic pa-
rameters required for βt computations, such as the soil matric
potentials for closed stomata, ψc, and open stomata, ψo (see
Eqs. 8, 10, 12), and the plant root distribution parameters (see
Eq. 9).

2.5 Synthetic data and real data experiments

2.5.1 Case 1: synthetic data

In our synthetic experiments, we assumed values for some
parameters to generate synthetic photosynthesis rates that
could serve as synthetic training data. Then, we estimated
those parameters with NNs while keeping other components
unmodified. These experiments were intended to verify the
plausibility and efficiency of the dPL framework and to ver-
ify the identifiability of parameters.

In the first synthetic case, “Vc,max-only”, the δpsn frame-
work was tested for its ability to accurately retrieve a sin-
gle PFT-dependent parameter, Vc,max25, using NNV . We used
the suggested values for Vc,max25 from CLM4.5 for different
PFTs to calculate the synthetic net photosynthetic rates (syn-
thetic training data). For this case the βt values were kept
constant (equal to one) for all data points, since we intended
to test the retrievability of one parameter.

In the second synthetic case, “Vc,max-B”, we tested si-
multaneously retrieving both Vc,max25 and B, the latter of
which varies spatially for different static attributes. For sim-
plicity, we used only the topsoil layer for this case and ex-
cluded the influence of the PFT term; therefore we assumed
B1 = 0.1 ·Fom,1+ 0.45 · (%sand1+%clay1) to generate the
synthetic data. The plant wilting factor (w1) was then calcu-
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Figure 3. Map of sites available from the leaf gas exchange database (Lin et al., 2015). Different symbols represent different PFTs. The
C4 site is highlighted by a thick-bordered hexagon. The marker sizes represent the quantity of data available for each site (map based on
matplotlib basemap; Hunter, 2007).

lated using Eq. (12) and was fed into Eq. (9) to compute the
soil water stress function (βt). Since we were using only the
topsoil layer, βt was simplified to (βt = w1r1) with a root dis-
tribution value for the topsoil layer (r1 = 1). To retrieve B1,
we used NNBi (see Eq. 11) but excluded the PFT term since
it was not used in synthesizing B1 values.

For both synthetic runs “Vc,max-only” and “Vc,max-B”, the
MLP models were trained concurrently for all PFTs with sev-
eral data points for each PFT. Moreover, white noise was
added to the synthetic values of An with a standard devia-
tion of 5 % of the mean value.

2.5.2 Case 2: real data

Once we confirmed that the model passed the test of the syn-
thetic case (correctly retrieving parameter values which were
used to generate the data it was given), it was then applied to
a real dataset (Lin et al., 2015) using observation data. This
tested whether the model, learning from this dataset for many
of the PFTs, could find parameters to better describe photo-
synthesis data than the literature values. There was no ground
truth in this case so we tested multiple formulations to better
understand the impacts of allowing more or less flexibility in
the estimation and role of each parameter.

We tested several formulations to estimate either one
(Vc,max25) or two parameters (Vc,max25 and B) at a time. In
essence, we compared allowing either one or two of the pa-
rameters to be estimated vs. using the default formulation or
values from the original model. For Vc,max25, the default val-
ues were those defined in CLM4.5, while for βt, the default
equations (Appendix B) were used to obtain its values. Alto-
gether, we trained the following models.

Vdef+Bdef: in this case, Vc,max25 took the default values
from CLM4.5 and B was calculated using the default

equations (Appendix B). This was used as a reference
case.

Vdef+B: in this formulation, the default Vc,max25 values
from CLM4.5 were used while B was estimated using
NNBi .

V +Bdef: in this formulation, Vc,max25 was estimated
using NNV , while B was calculated using the default
equations (Appendix B).

V +B: in this formulation, we employed both NNV and
NNBi . They were trained concurrently to see if this in-
terfered with parameter retrieval.

Representing a real case, Bi was estimated for the ith soil
layer based on the static attributes for that layer in the four
tested model formulations. Thus, Bi varied both horizontally
and vertically for each PFT.

Just as in the synthetic case, the MLPs were shared be-
tween all sites. All sites were used to calculate one loss func-
tion as in typical ML tasks, with the hope of ensuring the
wide applicability of the MLPs and leveraging the synergy
between all sites (Fang et al., 2022). In this way, we also
hoped to identify parameters that generalize well in space
and are applicable at large scales.

The MLPs employed had three layers: an input layer, a
single hidden layer, and an output layer. To ensure an out-
put value between 0 and 1 for both Vc,max25 and B parame-
terizations, sigmoid activation functions were used for both
hidden and output layers. Vc,max25 was then rescaled to be
within a pre-defined range based on literature values of 20 to
150 µmol m−2 s−1. For the ith soil layer, Bi values were kept
between 0 and 1, so with Si ranging between 0.01 and 1 (see
Appendix B), the term S

−Bi
i then had a range of 1 to 100.

This ensured that the value of ψi ranged from ψc to ψo (see
Eq. 10).
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The quantity of available data posed a limitation and
did not permit an extensive hyperparameter tuning experi-
ment with a train/validation/test split. Hence, we employed
a “lazy” trial and error process with hyperparameters (learn-
ing rates and hidden size) using 70 % of the data as train-
ing data and 30 % as a validation set just to ensure we had
a roughly reasonably performing hyperparameter set. We se-
lected a learning rate of 0.045 and a hidden size equal to
the number of inputs (nine for NNV and eight for NNBi ).
We kept these same hyperparameters when we ran five-fold
cross validation with an 80 % : 20 % train : test ratio. In addi-
tion, we found that moderately perturbing the hyperparame-
ters resulted in very little change in the performance (see Ap-
pendix C). This design was necessary considering the practi-
cal limits of the available data, even though this study already
represents a large-sample study in the domain of ecosystem
modeling.

Two different tests were performed with respect to data
splitting: temporal holdout and randomized cross validation
– the former test stresses the models’ ability to project into
the future, while the latter is the typical experiment run in
the literature. Due to the irregularity of measurement dates at
each location (as mentioned previously in Sect. 2.4.1), the
temporal periods for the training and testing datasets var-
ied by location. In the temporal holdout test, for each PFT
in each location, the available dates of measurements were
recorded. The oldest 80 % of these dates were used for train-
ing and the remaining most recent 20 % were used for test-
ing. The temporal holdout test was run for both synthetic and
real data experiments. For the randomized cross validation
test, as the name implies, the dataset was randomly split into
five folds (groups) and each time the model was trained on
four folds (80 % of the data points) and tested on the 5th fold
(20 % of the data points). This was done a total of five rounds
so that all of the data points were used for testing once. The
cross validation test was run only for the real data experi-
ments.

We then compared the values of Vc,max25 learned by the
V +B model, trained on all data points, against values of
Vc,max25 in other data sources (Kattge et al., 2020; Rogers,
2014), which highlights the variability of these parameters.
The TRY database (Kattge et al., 2020) has Vc,max25 values
defined for several species which can be aggregated to get
unique values for each PFT (Table 3). Moreover, we com-
pared our Vc,max25 values to the ones used in different Earth
system models (ESMs; Rogers, 2014) for various PFTs, e.g.,
the Atmosphere-Vegetation Interaction Model (AVIM; Ji,
1995) and the Biosphere Energy Transfer Hydrology scheme
(BETHY; Knorr and Heimann, 2001). The comparison en-
abled us to determine whether the inversely determined val-
ues were on the same order of magnitude as previously em-
ployed in the literature, and were physically plausible. We
expected our values for different PFTs to be at least partially
correlated with the ones used in the literature, as they were
meant to represent the same physical quantity. A complete

Table 1. Performance metrics used for evaluation and their possible
ranges.

Metric Formula Range

COR

n∑
i = 1

(OBS−OBS )(SIMi−SIM )

σOBSσSIM
[−1, 1]

RMSE

√
n∑

i = 1
(SIMi−OBSi )2

n [0,∞]

BIAS

n∑
i = 1

(SIMi−OBSi )

n [−∞,∞]

NSE 1−

n∑
i = 1

(SIMi −OBSi )2

n∑
i = 1

(OBSi −OBS)2
[−∞, 1]

σ refers to the standard deviation, OBS refers to the mean of the
observed values, and SIM refers to the mean of the simulated values.

disagreement or a different order of magnitude would sug-
gest that our values may not be physically representative.
Partial discrepancies would highlight any knowledge gaps.
We did not perform a similar comparison between learned
and computedBi values from default equations since the new
shape parameter Bi(soil,PFT) (see Eq. 11) is different from
the original one and has a different range (between 0 and 1).

2.6 Statistical metrics

To evaluate different experiments and explore the sensitiv-
ity of the results to changing different parameters, we chose
four different metrics as shown in Table 1. The four metrics
were root mean square error (RMSE), bias, Pearson’s cor-
relation (COR), and Nash–Sutcliffe efficiency (NSE). Both
RMSE and bias measure how far the model simulations are
from the observations (and thus the ideal value is 0); how-
ever, RMSE is the standard deviation of all errors while bias
is calculated as the average. COR measures the linear rela-
tionship between both the simulations and the observations,
ranging between −1 and 1. NSE measures the relative mag-
nitude of the residual variance relative to the observed data
variance (Nash and Sutcliffe, 1970), and has a perfect score
of 1. Table 1 shows the formulations of the four metrics and
their possible ranges.

3 Results

3.1 Results for synthetic data case

The results of the synthetic experiments showed that our
workflow successfully recovered the parameters in both the
one-parameter case (“Vc,max-only”, Fig. 4) and the two-
parameter case (“Vc,max-B”, Fig. 5). In the one-parameter
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“Vc,max-only” case, the recovered parameters agreed with the
assumed values almost completely for each PFT (Fig. 4a).
The model was able to capture the variability in the val-
ues of Vc,max25 for different PFTs, where the values ranged
from 100.7 µmol m−2 s−1 for rainfed crops (defined as Crop
R in CLM4.5) to around 50 µmol m−2 s−1 for C4 grass
(Fig. 4a). Moreover, we found nearly complete agreement
between the synthetic and recovered net photosynthesis rates
(An; Fig. 4b). This single-parameter case demonstrated that
the dPL framework and the posited formulation Vc,max25 =

NNV (PFT) were functional, but (as intended) did not show
the effects of parameter interactions.

With the dual-parameter case, we found a similarly near-
complete recovery for Vc,max25 (Fig. 5a) and a near-complete
reproduction of simulated photosynthesis (Fig. 5d). How-
ever, we noticed a negligible amount of scattering with βt
(Fig. 5c), and to a larger extent, with B (Fig. 5b). For all ex-
periments, we verified that the training and testing periods
were highly consistent (between green and blue points in the
scatterplots). The results indicate that the problem formula-
tion allows for sufficient sensitivity of the net photosynthesis
rate with respect to PFT-specific Vc,max25 and the soil water
constraint. In addition, Vc,max25 and B influence the photo-
synthesis rate in different ways so that, along with a large
dataset with different combinations of moisture conditions
and PFTs, they can be identified simultaneously. This forms
the basis of the next stage of the work. The soil moisture
parameter identifiability was slightly weakened compared to
Vc,max25 because there were more equations involved be-
tween B and An, and some of them had parameters in the
exponential operators, e.g., ψi = ψo · S

−Bi
i . Mathematically,

such a curve can be flat and the gradients can be small in
some ranges of S. Mechanistically, An can have reduced sen-
sitivity to B under some conditions. Therefore, we do not
expect soil properties to be fully identifiable from photosyn-
thesis data, but the general pattern may still be learnable.

3.2 Results for real data case

3.2.1 Comparisons between candidate formulations

In the test cases employing real datasets, the V +B model
(employing both NNV and NNBi ) exhibited obvious ad-
vantages over the default photosynthesis module in FATES
model and the default parameters, as well as the mod-
els that learned only one of the parameters (Table 2). For
the temporal holdout test, the default CLM4.5 parameters
(Vdef+Bdef) led to a lower correlation (0.539), a large bias
(1.330 µmol m−2 s−1) and nearly zero NSE (0.001, result-
ing mainly from the large bias; Table 2a). In particular, the
default values appeared to cause an underestimation of the
net photosynthetic rate (An) for BET Tropical (Fig. 6a, I)
and C3 grass (Fig. 6a, II) but large overestimation for the
high-photosynthesis data points of C4 plants (Fig. 6a, III).
After allowing B to be learned (Vdef+B), the correlation

for testing slightly increased to (0.551), while the bias re-
mained high (0.724 µmol m−2 s−1); it seems that the learn-
ing of water stress alone did not address the bias. On the
other hand, when we only allowed Vc,max25 to be estimated
(V +Bdef), the bias greatly increased (−1.653) and the test
NSE was slightly decreased to (0.130). Finally, if we allowed
both parameters to be learned (V +B), a decent correlation
was obtained (0.757), the bias was the smallest value yet
(−0.327 µmol m−2 s−1), and the test NSE was 0.565, which
means the model explained about half of the variance in the
observed photosynthesis rate. The remaining error might be
attributable to other untuned parameters, processes related
to vegetation states which are not considered by the present
model. These issues can be potentially further improved in
the future using the differentiable modeling paradigm.

A similar behavior in the performance metrics was ob-
served for the five-fold cross-validation test (see Sect. 2; Ta-
ble 2b). The cross validation test decreased to a great extent
the disparity in the metrics’ values between the training and
testing datasets (Table 2b). However, contrary to the tem-
poral holdout test, we found a slight improvement in COR
(0.596) and NSE (0.137) when B was learned (Vdef+B),
while a much higher boost was found in the metrics when
Vc,max25 was learned (V +Bdef). This shows the higher im-
pact of learning Vc,max25 on the simulation of An, where the
COR and NSE increased to 0.695 and 0.449, respectively,
while the bias decreased to −0.478. Similar to the tempo-
ral holdout test, the V +B model showed the best metrics in
comparison to other models, with the lowest RMSE (4.492)
and bias (0.022) values, and the highest COR (0.763) and
NSE (0.579) values.

Consistent with the observations of the synthetic experi-
ments, Vc,max25 and B impacted An in different ways. When
Vc,max25 was not adjusted, the photosynthesis rates simulated
for a number of sites in the high An range (most of them
C4 plants) had some substantial overestimation, regardless
of whether B had learned or default values (Fig. 6a). It was
only after the model also learned Vc,max25 that these high bi-
ases were reduced (Fig. 6b). Hence, apparently, the learning
reduced the Vc,max25 for these sites compared to the default
values. In contrast, learning B mainly corrected the low bias
for low simulated An data points (specifically for BET Trop-
ical, C3 grass, and C4 grass; Fig. 6b). A group of sites with
underestimations inAn has been corrected upward (from yel-
low to green, bottom points in Fig. 6b) due to a correction
in the soil parameter B. Apparently, the original parameters
overestimated the water stress for these sites. Learning both
parameters together was also effective in reducing overesti-
mations and underestimations in the simulated An for NET
Boreal and BDS Temperate, respectively. Our results sug-
gest the adjustments to both parameters improved the results,
but Vc,max25 was more impactful, especially in addressing the
bias.

We also noticed the different PFTs benefited differently
from the parameter learning. For example, BDS Temperate
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Figure 4. Single parameter recovery for synthetic data. (a) Comparison of modeled parameter values to literature values by PFT. (b) Actual
and modeled net photosynthesis rates for training and testing periods (dashed line indicates the ideal 1 : 1 relationship).

Figure 5. Dual parameter recovery for synthetic data. (a) Comparison of modeled parameter values to literature values by PFT estimated
using NNV . (b) Actual and modeled parameter values for B, estimated using NNBi . (c) Actual and modeled parameter values for βt for the
topsoil layer. (d) Actual and modeled net photosynthesis rates for training and testing periods. Dashed lines in (b)–(d) indicate the ideal 1 : 1
relationship.
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Figure 6. Comparisons of photosynthesis model calibration. Comparing impacts of default and learned parameters by plotting observed vs.
simulated An (net photosynthetic rate) values calculated using different candidate models (described by which parameter definitions they
use). (a) Impact of learning B with default Vc,max25. (b) Impact of learning Vc,max25 with varying B (either learned alongside V in V +B
or defined by the default equations in CLM4.5). The colors represent the results from the four different models, the shapes indicate the PFT
groups, and the dotted line in each panel indicates the ideal 1 : 1 relationship. Subscript “def” indicates that the variable was calculated using
the default definitions in CLM4.5, while no subscript indicates that the parameter was learned using an NN. Scatterplots were created using
the test results from each of the five folds of the cross validation test. For better illustration, only three PFTs are placed in a panel, as indicated
by the panel titles. Comparing symbols in the same panel gives insights about the role of estimating B, while comparing left and right panels
gives insights about the role of estimating Vc,max25.

and Crop R did not benefit much (compare red symbols in
Fig. 6a and green symbols in Fig. 6b), BET Tropical and
NET Temperate saw moderately improved correlation, while
C3 grass and C4 grass saw significant improvements in both
correlation and bias. These observations indicate the parame-
ters (and thus related processes) tuned here (Vc,max25 and B)
have large impacts on C3 and C4 grass while other untuned
processes, e.g., vegetation growth and nutrient states, may be
contributing to the errors with BDS Temperate and Crop R.
C3 plants’ improvement is mostly due to learning B, as they
are more sensitive to drought in the model, while C4 plants’
improvement is due to learning Vc,max25, as they are more
resistant to drought but more sensitive to light in the model.

In addition, our test showed that the framework is moder-
ately impacted by long-term nonstationarity, as the temporal
test had worse metrics than the cross-validation test (com-
pare Table 2 part b with a). The absolute value of the bias
increased from 0.022 in the cross validation test to 0.327 in
the temporal test. This suggests that the current model (and
perhaps the training data) still has some limitations with rep-
resenting long-term changes. Possible reasons may include
CO2 fertilization and its impact on water use efficiency or
differences in the state of plants, as this factor is not included
in our present parameterization. In the future, these issues
could be addressed by assembling a more long-term train-
ing dataset (the Lin15 dataset has data ranging from 1991 to
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Table 2. Performance metrics for the candidate models for the Lin15 dataset. In the following, the subscript “def” indicates that the default
parameter value from CLM4.5 was used, while parameters without “def” were estimated as an output of a NN (in all cases, V indicates that
Vc,max25 was estimated as a function of PFT using NNV and B indicates estimation using NNBi ). Part (a) shows the temporal holdout test,
where the oldest 80 % of data points were used for training and the most recent 20 % were reserved for testing; part (b) shows the cross
validation (five-fold) test.

(a) Temporal holdout test results

Runs Corr RMSE Bias NSE
(µmol m−2 s−1) (µmol m−2 s−1)

Train Test Train Test Train Test Train Test

Vdef+Bdef 0.539 6.922 1.330 0.001
Vdef+B 0.607 0.551 6.469 6.220 1.357 0.724 0.142 0.140
V +Bdef 0.744 0.555 4.730 6.255 −0.234 −1.653 0.541 0.130
V +B 0.771 0.757 4.455 4.423 0.034 −0.327 0.593 0.565

(b) Cross validation (five-fold) test results

Runs Corr RMSE Bias NSE
(µmol m−2 s−1) (µmol m−2 s−1)

Train Test Train Test Train Test Train Test

Vdef+Bdef 0.539 6.922 1.330 0.001
Vdef+B 0.597 0.596 6.419 6.434 1.242 1.242 0.140 0.137
V +Bdef 0.701 0.695 5.086 5.142 −0.487 −0.478 0.460 0.449
V +B 0.769 0.763 4.440 4.492 0.012 0.022 0.589 0.579

2013), as well as improving the parameterization and physics
of the model.

3.2.2 Recovered parameters

Even though we did not prescribe the values of Vc,max25, the
training on the dataset converged to parameter values that
were partially correlated with, yet still substantially differ-
ent from, the literature values, and were on the same order of
magnitude (Fig. 7). The default Vc,max25 values came from in
situ measurements at a limited number of sites, while our val-
ues came from learning from a moderately large dataset (es-
sentially an inversion process limited to the model structure).
The fact that they agreed with each other in the main pat-
tern suggests both have merit, and that the learning process
captured fundamental physics. The upper half of Fig. 7b saw
a high correlation, but Vc,max25 values for the V +B model
were uniformly higher than the CLM4.5 defaults, especially
for the NET Boreal PFT. The correlation was lower toward
the lower half of Fig. 7b (where Vc,max25 from CLM4.5 was
lower than 65 µmol m−2 s−1) – the learned Vc,max25 had a
larger variability. In particular, the learned Vc,max25 (V +B)
for C4 grass is much lower than the default, which could
be attributed to species-level variability and the fact that the
dataset contains very limited sites with C4 plants. Hence, we
do not argue that the values learned here would be applicable
globally to other C4 grasses. It seems that the inter-PFT vari-
ability in Vc,max25 was previously underrepresented by the
CLM4.5 default parameter values (BET Tropical, BET Tem-

perate, BDS Temperate, C4 grass), and the learning process
used here enhanced the variability. Moreover, we note that
for either Crop R, BET Tropical, BET/BDT Temperate, or
C4 grass, the influence of learning B on Vc,max25 was mostly
small (Vc,max25 from V+B and V+Bdef models were mostly
similar), and thus the interactions between these two param-
eters were not significant. The overall results showcase the
ability of the algorithm to adapt to data and reveal parameter
interactions.

In our interpretation, the learned values represent a more
“fine-tuned” version of the literature Vc,max25 values, with the
interference from soil water stress disentangled. The magni-
tude and ranking for PFTs remained similar to the literature
values, but the results were improved in different ways for
different PFTs. The V +B model obtained lower Vc,max25
for C4 grass, addressing the significant overestimation bias
for these sites, which we noted in Fig. 6a, III. Due to their
different photosynthesis pathway, C4 plants have the lowest
learned Vc,max25, but overall the highest net photosynthesis
rates, which were not heavily influenced by the choice of
the B parameter. For C3 grass, V +B only slightly increased
Vc,max25 compared to the default CLM4.5 values, which ad-
dressed the notable low bias in Fig. 6b, II. The default soil pa-
rameterization for C3 grass sites seemed somewhat deficient
as soil water stress accounted for the other parts of variance
in net photosynthesis, as demonstrated by the comparison be-
tween V +B and V +Bdef models in Figs. 6b-II and 7b for
C3 grass.
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Figure 7. Parameter recovery for real data. (a) Comparison of modeled parameter values to literature values of Vc,max25 by PFT. (b) Actual
and modeled Vc,max25 values plotted by PFT (dashed line indicates the 1 : 1 ideal relationship). In this figure, both “V +Bdef” and “V +B”
models were trained using the whole dataset.

We compared our learned Vc,max25 values (Table 3 and
Fig. 8) with values from other ESMs and with some observa-
tory values in the TRY database (Kattge et al., 2020; Rogers,
2014). The learned Vc,max25 values are higher than those
of the TRY database for most PFT classes except for BDT
Temperate and BDS Temperate; however, they are within
the range of values used in other ESMs except for relatively
higher estimations for Crop R, NET Boreal, and C3 grass. On
the scale of ESMs, several values for Vc,max25 are adopted
by those models. We computed the correlation coefficient
between our learned Vc,max25 values and reference values
from other ESMs and the TRY database, finding high corre-
lations (except for AVIM) between the learned and reference
Vc,max25 values for CLM4.5 (0.844), BETHY (0.900), and
the TRY database (0.699). For instance, Vc,max25 for C4 grass
is 25 and 20 (µmol m−2 s−1) in AVIM and BETHY, respec-
tively (Table 3). These values agree with the learned Vc,max25
of the V +B model of 22.90 (µmol m−2 s−1), whereas much
higher values were found to be adopted for C4 grass, with
60 (µmol m−2 s−1) being used in the biogeochemical cycles
model BiomeBGC as reported in Rogers (2014) and 51.6
(µmol m−2 s−1) in CLM4.5. Vc,max25 from the V +B model
and TRY database are similar for BET Tropical and BDT
Temperate. For BDS Temperate, the learned Vc,max25 was
lower than that in TRY by ∼ 20 (µmol m−2 s−1), but simi-
lar values were used by BETHY and lower values were used
by AVIM. For Crop R, NET Boreal, NET Temperate, and
BET Temperate, the learned Vc,max25 values were all ∼ 20–
30 (µmol m−2 s−1) higher than those of the TRY database,
but (except for NET Boreal) similar values have been used in
AVIM or BETHY. Both the learned (V +B) and the observed
(TRY database) Vc,max25 values show a similar pattern to the
lowest Vc,max25 for BET Tropical and a high value assigned
for Crop R.

4 Discussion

As an initial exploration of the potential of the emerg-
ing differentiable computing paradigm (a genre of physics-
informed ML; Shen et al., 2023) for applications in ecosys-
tem modeling, our work showed promise but also had
many limitations, as the goal was not to produce the best-
performing photosynthetic model. We restricted our param-
eter sets to be dependent on PFT, whereas it is known
that within-PFT variation can be significant, and parame-
ters could also be determined on the trait level as well as
by multiple environmental factors. Our model did not con-
sider the effects of memory (e.g., rainfall in previous days) or
the state of the vegetation (e.g., carbon stored in the canopy
or carbon : nitrogen ratios in the canopy). The soil moisture
data comes from the ERA5 dataset, which, based on com-
parisons to in situ data, would be outperformed by ML-
based soil moisture predictions (Fang et al., 2017; Liu et al.,
2022, 2023), but we used it due to its seamless global cover-
age and availability for multiple soil depths. This work also
only modified the parameterization scheme and did not learn
model structures. Recently, development in differentiable hy-
drologic models has allowed for learning parts of the model
using NNs (Feng et al., 2022a, b). In summary, we believe
there is still much room for improving model quality, but at
some point we will likely run into the limits of measurements
(aleatoric uncertainty) or data availability (epistemic uncer-
tainty; Hüllermeier and Waegeman, 2021). Future effort can
harness deep networks to establish reference levels as a mea-
sure of the data uncertainty (Feng et al., 2022a).

This work appears to be the first evaluation of the Lin15
dataset, and, as such, it establishes a reference level to which
future studies can compare. The current dataset may still
have limitations in that the number of sites for C4 plants is
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Table 3. Vc,max25 simulated by the V +B model versus observed values from the TRY database (with partial overlap in species with the
Lin15 dataset – the percentage of overlap is provided in the table), and used in different ESMs such as CLM4.5, AVIM, and BETHY.

PFT CLM4.5 AVIM BETHY V +B (ours) TRY (mean/% species overlap) TRY (SD)

Crop R 100.7 55 90 116.83 84.20/60.0 % 2.19
NET Boreal 62.6 58 58 92.58 62.90/100.0 % 22.53
BET Tropical 55 64 28/36 39.37 33.14/86.5 % 14.09
NET Temperate 62.5 60 58 61.27 44.33/50.0 % 7.13
BET Temperate 61.5 68 58 61.10 37.73/26.7 % 0.27
BDT Temperate 57.7 60 54 44.68 50.27/50.0 % 21.62
C3 grass 78.2 55/40 71 88.58 – –
BDS Temperate 54 52 65 66.70 87.61/58.3 % 11.77
C4 grass 51.6 25 20 22.90 (limited data points) – –

Figure 8. The correlation between the Vc,max25 values estimated by the V +B model on the y axis versus Vc,max25 values from CLM4.5
(black markers), AVIM (cyan markers), BETHY (magenta markers), and the TRY database (orange markers). Different marker shapes
represent different PFTs, while different colors represent different reference sources for Vc,max25 per PFT. For the TRY database, we do not
have values for C3 grass and C4 grass due to the lack of overlap in species between the TRY database and our dataset for those two PFTs.
The dashed line indicates a 1 : 1 relationship.

small and in that it does not allow for ample testing. Some
geoscientific domains have well-known benchmark datasets,
e.g., the CAMELS dataset in hydrology (Feng et al., 2020).
Having such a common (and hopefully large) benchmark
dataset allows better model structures to be rapidly discov-
ered and is highly beneficial to the growth of the commu-
nity (Shen et al., 2018). Related to the limits of measurement
errors discussed above, multiple deep-learning-based stud-
ies have explored the approximate data error limit (or best
achievable model) of CAMELS and that knowledge has been
appreciated by the community (Feng et al., 2021). More-
over, deep learning methods benefit from data synergy effects
(Fang et al., 2022), where more sites and more diverse data
lead to a more robust model and better performance for each
site.

Although applying the dPL framework improved the pa-
rameters to an extent, the model still has similar structural
limitations as other Farquhar-type models. We did not test
the model’s ability to capture the seasonality of the net pho-
tosynthetic rate due the limited site-level temporal data. The
seasonal behavior of the model is expected to be similar to
other Farquhar models as here we only learned static pa-
rameters. Further improvement likely will need to consider
vegetation growth. Also, this study did not cover spatial gen-
eralization since we do not present results for spatial tests
nor is it based on site-level comparison. Improving spatial
generalization may require further changes in the model or
dynamical parameters or the use of other error mitigation ap-
proaches (Feng et al., 2021, 2022b; Ma et al., 2021). This
was not within the scope of this study; however, it will be
considered for future work.
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We would like to highlight that such parameterizations are
suitable to the target and forcing datasets used in training
(which is still the most representative accessible dataset) and
are related to the PBM employed. The dataset may have lim-
itations related to the consistency of the measurement ap-
proach, and there may be errors in the forcing data or im-
perfections in model structure. The model performance may
also vary based on the different forcing data and inputs used.

5 Conclusions

In this study, we proposed a novel differentiable ecosys-
tem modeling framework that uses NNs as a parameteriza-
tion scheme to support a process-based ecosystem model
(FATES). Training coupled NNs was not previously possi-
ble without differentiable programming, and it allows us to
approximate complex a priori unknown mapping relation-
ships between PFTs, landscape characteristics, and physi-
cal parameters. The photosynthesis module was treated as a
system of nonlinear equations, and, like other such systems,
could be solved efficiently and in a massively parallel fash-
ion on GPUs by our differentiable framework. Vc,max25 and a
soil water parameter (B) could be simultaneously identified
in our synthetic experiments, because they played different
roles in the model.

Compared to purely data-driven ML approaches, the
differentiable programming framework provides physically
meaningful variables and can be used to learn relationships
from big data. Via training on a global dataset, we found
Vc,max25 values for global sites that correlate with the values
in the literature but produce more accurate net photosynthe-
sis rates. It is noteworthy that these values were identified
without any supervision from experts other than the prepa-
ration of the training dataset and the model. We conclude
that Vc,max25 has a larger impact on photosynthesis than the
soil water stress parameter, but both can be useful in tun-
ing model responses, with varied impacts on different plants,
and their default values were not optimal. Not only is dif-
ferentiable modeling able to improve simulation quality and
provide model parameterization, it also allows us to modify
model structure and ask questions regarding unclear parts of
the model in the future. There is significant room for this
framework to improve and expand to other ecosystem mod-
eling applications.

Appendix A: The system of nonlinear equations

The FATES photosynthesis module is based on the classical
Farquhar model for C3 plants (Farquhar et al., 1980), which
calculates the photosynthetic rate based on carbon fluxes un-
der different limitations. For C4 plants, it uses the Collatz
model (Collatz et al., 1992). Both models assume that the
gross photosynthetic rate is affected by the maximum rate
of carboxylation and is limited by the concentration of Ru-

bisco (Ac; see Eq. A1), light and electron transport (Aj; see
Eq. A2), and the concentration of PEP carboxylase enzyme
in C4 plants (Ap; see Eq. A3). Ac,Aj, and Ap are calculated
as

Ac =


Vc,max×(Ci−0∗)

Ci+Kc

(
1+ Oi

Ko

) for C3 plants

Vc,max for C4 plants

 , (A1)

Aj =

{
Jx×(Ci−0∗)

4Ci+80∗
for C3 plants

α(4.6ϕ) for C4 plants

}
, (A2)

AP =
{
Kp

Ci
Patm

for C4 plants
}
, (A3)

where Vc,max is the maximum carboxylation rate,Ci is the in-
tercellular leaf CO2 pressure (nonlinear system output), 0∗ is
the CO2 compensation point, Kc and Ko are the Michaelis–
Menten constants,Oi is the O2 partial pressure (calculated as
20 % of the atmospheric pressure), Jx is the electron trans-
port rate (see Eqs. A4 and A5), α is the quantum efficiency
(0.05 mol CO2 mol−1 photon), ϕ is the photosynthetically ac-
tive radiation (available in Lin15), Kp is the initial slope of
C4 CO2 response curve, and Patm is the atmospheric pressure
(available in Lin15).
0∗, Kc, and Ko are the scaled parameters based on leaf

temperature (Tv) calculated using their standardized val-
ues at 25 ◦C which are 0∗25 = 42.75× 10−6Patm, Kc,25 =

404.9×10−6Patm, andKo,25 = 278.4×10−3Patm, multiplied
by the temperature response functions defined in chapter 9.0
in CLM5.0 (Lawrence et al., 2019).
Jx is given by the minimum root of the following quadratic

equation:

θPSIIJ
2
x − (IPSII+ Jmax)Jx + IPSIIJmax = 0, (A4)

where Jmax is the maximum electron transport rate, θPSII is
an empirical curvature for the electron transport rate (0.7)
and IPSII is the light utilized in electron transport calculated
using a quantum yield parameter (8PSII = 0.85) as

IPSII = 0.58PSII(4.6ϕ). (A5)

The three biophysical rates Vc,max, Jmax, and Kp along with
the plant respiration rate (Rd ), adjusted for Tv , are calculated
using their standardized values at 25 ◦C multiplied by tem-
perature response functions defined in Chap. 9.0 in CLM5.0
(Lawrence et al., 2019). Vc,max is also adjusted for the soil
water availability by multiplying it with the soil water stress
function (βt).

In our case, Vc,max25 is either the default value provided
in CLM4.5 or it is learned by an NN, which then is used to
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calculate other standardized biophysical rates as

Jmax25 = 1.67Vc,max25, (A6)

Rd25 =

{
0.015Vc,max25 for C3 plants
0.025Vc,max25 for C4 plants

}
, (A7)

Kp25 =
{

20000Vc,max25 for C4 plants
}
. (A8)

The gross photosynthetic rate (A) is then calculated by solv-
ing for the minimum root of the quadratic equations:

θcjA
2
i −

(
Ac+Aj

)
Ai+AcAj = 0, (A9)

θipA
2
−
(
Ai+Ap

)
A+AiAp = 0, (A10)

where Ai is an intermediate co-limited photosynthetic rate
calculated using the empirical curvature parameter (θcj =

0.999). Using Ai, Ap, and the empirical curvature parame-
ter (θip = 0.999), the gross rate (A) is given by the smaller
root of Eq. (A10). The net photosynthetic rate (An) is

An = A−Rd . (A11)

Then using An, the CO2 partial pressure at the leaf surface
(Cs) is calculated as

Cs = Ca−
1.4PatmAn

gb
≥ 1.0× 10−6, (A12)

where Ca is CO2 partial pressure near the leaf surface (es-
timated using observations of the leaf surface CO2 concen-
trations in Lin15) and gb is the leaf boundary layer conduc-
tance, which was available in Lin15 for some sites and the
missing values were filled using the mean gb of the whole
dataset. The stomatal conductance (gs) is then given by the
maximum root of the quadratic equation:

g2
s + bgs+ c = 0, (A13)

where b, c, and d are functions in some PFT-dependent pa-
rameters:

b =−

(
2(go+ d)+

(g1d)
2

gb× vpd

)
, (A14)

c = g2
o +

(
2go+ d

(
1−

g2
1

vpd

))
d, (A15)

d =
1.6An

Cs/Patm
. (A16)

go, the water stressed minimum stomatal conductance, is cal-
culated as the multiplication of βt and the unstressed min-
imum stomatal conductance (10 000 µmol m−2 s−1 for C3,
40 000 µmol m−2 s−1 for C4). g1, the slope of the Med-
lyn stomatal conductance model (Medlyn et al., 2011), is a
PFT-specific parameter defined in CLM5.0 (Lawrence et al.,
2019). vpd, the vapor pressure deficit, was available in Lin15.
Finally, Ci, is related to An using Ca, Patm, gs, and gb as the
following:

Ci = Ca−AnPatm
(1.4gs+ 1.6gb)

(gs× gb)
. (A17)

Appendix B: Computations of btran (βt) in CLM4.5

βt is calculated by aggregating the plant wilting factor (wi)
and plant root distribution (ri) across different soil different
layers as

βt =
∑
i

wiri . (B1)

The plant wilting factor (wi) for soil layer i is mainly depen-
dent on the soil water potential ψi and other PFT-dependent
parameters such as the soil matric potentials for closed stom-
ata ψc and open stomata ψo, which represent the soil wa-
ter potentials when stomata are fully closed and fully open,
respectively. The factor wi is also dependent on other fac-
tors like the temperature of the soil layer (Ti) relative to the
freezing temperature (Tf), the volumetric liquid water content
(θliq,i) and volumetric ice (θice,i) content, and the volumetric
water content at saturation (θsat,i).

wi =



ψc−ψi
ψc−ψo

[
θsat,i−θice,i
θsat, i

]
≤ 1;

Ti > Tf− 2 and θliq,i > 0

0;
Ti ≤ Tf− 2 or θliq,i ≤ 0


. (B2)

The soil matric potential ψi is calculated using a power-law
formulation:

ψi = ψsat, i × S
−Bi
i ≥ ψc, (B3)

whereψsat,i is the saturated soil matric potential, Si is the soil
wetness, and Bi is the Clapp–Hornberger parameter, all de-
fined for a specific soil layer (i). Different soil attributes such
as percentages of sand (%sandi) and clay (%clayi), fraction
of organic matter (Fom,i), and soil moisture (θliq,i) are used
in computing ψsat,i , Si , and Bi . ψsat,i is calculated as

ψsat,i =
(
1−Fom,i

)
×ψsat,min, i +Fom,i ×ψsat, om, (B4)

where ψsat,om is the saturated organic matter matric potential
(−10.3 mm; Letts et al., 2000) and ψsat,min,i is the saturated
mineral soil matric potential calculated using %sandi as

ψsat,min,i =−10.0 × 101.88− 0.0131×(%sand)i . (B5)

The soil wetness (Si) is calculated using the volumetric con-
tents θliq,i , θice,i , and θsat,i as

Si =
θliq,i

θsat,i − θice,i
,0.01 ≤ Si ≤ 1, (B6)

where θsat,i for a soil layer is

θsat,i =
(
1−Fom,i

)
× θsat,min, i +Fom,i × θsat, om. (B7)

θsat,om is the porosity of the organic matter (0.9; Letts et al.,
2000; Farouki, 1981), while the porosity of the mineral soil
(θsat,min) using %sand is

θsat,min,i = 0.489− 0.00126× (%sand)i . (B8)
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Similar to ψsat,i and θsat,i (see Eqs. B4 and B7), the parame-
ter Bi is calculated as

Bi =
(
1−Fom,i

)
×Bmin, i +Fom,i ×Bom, (B9)

where Bom is the parameter for organic matter (2.7; Letts et
al., 2000), while Bmin,i , the parameter for mineral soil, is

Bmin,i = 2.91+ 0.159× (%clay)i . (B10)

Appendix C

Table C1. V+B model formulation performance for different sizes of NNBi [input size, hidden size, output size] with a 80 % : 20 % train : test
split ratio.

Corr RMSE Bias NSE
(µmol m−2 s−1) (µmol m−2 s−1)

Train Test Train Test Train Test Train Test

V +B 0.7713 0.7570 4.4561 4.4226 0.0090 −0.3530 0.5928 0.5651 NNBi [8,6,1]
0.7716 0.7560 4.4544 4.4306 0.0356 −0.3210 0.5931 0.5635 NNBi [8,7,1]
0.7714 0.7567 4.4553 4.4228 0.0345 −0.3273 0.5929 0.5650 NNBi [8,8,1]
0.7715 0.7558 4.4542 4.4314 0.0245 −0.3317 0.5931 0.5633 NNBi [8,9,1]
0.7703 0.7591 4.4703 4.4079 0.0259 −0.3427 0.5902 0.5679 NNBi [8,8,8,1]∗

∗ In the last experiment we used two hidden layers (i.e., NNBi [input size, hidden layer1 size, hidden layer2 size, output size]).

Code availability. A code example demonstrating the differen-
tiable model and its training process is available at https://github.
com/hydroPKDN/diffEcosys/ (last access: 21 June 2023) and
citable via https://doi.org/10.5281/zenodo.8067204 (Aboelyazeed
et al., 2023).

Data availability. The datasets used in the model are publicly avail-
able from the sources cited in this paper. The leaf gas exchange
database (Knauer et al., 2018; Lin et al., 2015) can be accessed
at (https://bitbucket.org/gsglobal/leafgasexchange, last access: 15
May 2023)
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