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Abstract
While climate models have rapidly advanced in sophistication over recent decades, they
lack dynamic representation of human behavior and social systems despite strong
feedbacks between social processes and climate. The impacts of climate change alter
perceptions of risk and emissions behavior that, in turn, influence the rate and magnitude
of climate change. Addressing this deficiency in climate models requires a substantial
interdisciplinary effort to couple models of climate and human behavior. We suggest a
multi-model approach that considers a range of theories and implementations of human
behavior and social systems, similar to the multi-model approach that has been used to
explore the physical climate system. We describe the importance of linking social factors
with climate processes and identify four priorities essential to advancing the development
of coupled social-climate models.

Keywords Coupled social-climate models . Natural-human systems . Climate change .

Behavioral theory

The analysis and projection of climate began with the conceptualization of numerical weather
forecasting (Richardson 1922; Lynch 2006) and efforts to model global atmospheric flow
(Phillips 1956). These early global climate models evolved through refined representations of
physical processes (Walsh et al. 2013; Prodhomme et al. 2016) and inclusion of other Earth
system components, notably the coupling of the ocean with the atmosphere (Manabe and
Bryan 1969) and linkages with terrestrial vegetation (Sellers et al. 1986; Dickinson et al.
1993). This progression has led to modern, well-developed climate models that can simulate
global temperature, precipitation, and a broad range of climate variables, along with societal
impacts such as crop yields and water availability (Bonan and Doney 2018). While climate
models have incorporated feedbacks between climate and natural systems, for example, the
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absorption of CO2 by the oceans (Plattner et al. 2001) and carbon sequestration in terrestrial
ecosystems (Field et al. 2007), they continue to rely on static, external projections of
anthropogenic greenhouse gas (GHG) emissions, despite the likelihood of strong feedbacks
between the state of the climate system and human emissions (Palmer and Smith 2014;
Thornton et al. 2017). Externalizing anthropogenic GHG emissions sidesteps much of the
complexity and interplay between the climate and human system that in turn limits the realism
of projections of climate change.

Integrated assessment models (IAMs) have incorporated primarily economic feedbacks
between climate and the human system. The DICE model (Dynamic Integrated Climate-
Economy) and its variations incorporate linkages between climate, economic growth, climate
damage to the economy, and mitigation costs to maximize per capita utility and project
associated climate change (Nordhaus 2018, 2019). IAMs have also considered climate feed-
backs with specific economic sectors such as agriculture and building energy expenditures,
finding, for instance, that higher plant productivity from climate change will lead to increased
production of biofuels and reductions in fossil fuel emissions (Thornton et al. 2017) and that
warmer temperatures due to climate change will lead to increased GHG emissions to cool
buildings (Clarke et al. 2018).

The next step in the evolution of global climate models, Earth system models, and
integrated assessment models (henceforth referred to collectively as “climate models”) is to
endogenize anthropogenic GHG emissions beyond economics to broadly consider human
social and behavioral systems. The dynamic coupling of climate models with models of human
social and behavioral systems (henceforth referred to as “social models”) to incorporate human
behavior, decision-making, and other social processes is needed to provide robust projections
of climate change (Palmer and Smith 2014). Humans respond dynamically to climate change
in a boundedly rational manner, updating beliefs and behavior in response to experiences of
climate change, the influence of social networks, and other social, cultural, and political factors
(Hoffman 2010; Demski et al. 2017). Climate change solutions, therefore, need to account for
human preferences and behavior (“demand-side” solutions) that drive the adoption of mitiga-
tion policies, technologies, and infrastructure (“supply-side” solutions) by government and
industry (Creutzig et al. 2016). The linking of social models with climate models would, for
example, allow harmful changes in climate to lead to more aggressive improvements in energy
efficiency and more rapid deployment of renewable energy, thereby reducing subsequent
emissions (perhaps significantly) and projected change in climate (Beckage et al. 2018). Social
factors may also predict lags in mitigation to visible and damaging climate events due to the
difficulty of altering entrenched beliefs and industries (Penna and Geels 2015), or mismatches
between nations most responsible for creating emissions and nations most vulnerable to
climate change impacts (Füssel 2010). Human behavioral responses to climate change might
also lead to drastic actions such as geoengineering, which, though controversial (Kiehl 2006),
could directly reduce atmospheric CO2 or manage solar radiation (Wigley 2006; Vaughan and
Lenton 2011) while also decreasing the perceived urgency for curtailing greenhouse gas
emissions.

The social components of climate change are among the largest sources of uncertainty in
the timeline and extent of GHG emissions and projected climate change (Beckage et al. 2018).
Behavioral responses impact mitigation through perceptions of risk from climate change,
access to resources to reduce emissions or adapt to climate change, social norms, and existing
worldviews and social practices (Gifford 2011; Palmer and Smith 2014; Niamir et al. 2020).
Attitudes towards mitigation behaviors are representative of social, political, and religious
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ideologies and group membership (Weber 2010; Hoffman 2010; McCright et al. 2013) and
interact with perception of risk from climate change. For example, climate change can produce
increased weather extremes which may enhance the perceived urgency of response (Demski
et al. 2017) but also weather extremes inconsistent with the overall direction of climate change
(Vavrus et al. 2006). These extremes are perceived differently depending on prior beliefs
(Weber 2010). Linking social and climate models will thus enable a more complete and
dynamic representation of the climate system that will lead to (1) improved quantification of
future climate change uncertainty and (2) greater understanding of climate sensitivity to social
and behavioral components that can be leveraged to reduce the magnitude of future climate
change.

Early efforts to couple social and climate models, henceforth, social-climate models or
SoCMs, have demonstrated that social uncertainty in projections of climate change is poten-
tially as large as the uncertainty in the physical climate system (Beckage et al. 2018; Calvin
and Bond-Lamberty 2018). SoCMs have also demonstrated the large influence of social
learning, social norms, and perceived behavioral control on mitigation behavior and future
climate change (Beckage et al. 2018; Bury et al. 2019). Perceived behavioral control and
perceived social norms, for instance, exhibit a strong interaction in some SoCMs such that
high values of both are required to produce emissions reductions, indicating leverage points in
this representation of the social climate system (Beckage et al. 2018). But this result is from a
single instantiation of one behavioral theory, the Theory of Planned Behavior (Ajzen 1991),
coupled with a simplified, zero-dimensional climate model. Furthermore, the entire population
of Earth was modeled as a homogenous group, neglecting different cultures, emissions, and
experience of impacts. A wide set of behavioral theories could be used to construct social
models of human behavioral responses to climate change at the individual or group level
(Hargreaves 2011; Schlüter et al. 2017), just as there is a large set of climate models of varying
complexity that could be linked with a social model (Taylor et al. 2012). We expect relatively
more variation across social models compared to climate models.

The first attempts to couple a social model with a climate model have demonstrated the
importance of doing so, but further exploration and development of SoCMs is necessary for
more realistic and actionable projections. A next step in developing SoCMs is a multi-model
approach to examine the robustness of climate projections to choice of behavioral theory and
model implementation (Fig. 1). The assumptions of different behavioral theories and their
parameterizations to represent diverse cultural groups and social systems will influence
emissions through behavioral responses. Emissions behavior may result from regional policies
or individual decisions that increase or decrease GHG emissions in response to climate impacts
and perceived risks. These emissions influence the atmospheric concentrations of GHGs that
then feed back into the climate system.

We suggest the following priorities for developing SoCMs:

1. Evaluate an array of behavioral theories: Similar to the design and assessment of multiple
climate models, a robust analysis is needed to examine a diverse set of human behavioral
theories and implementations in social models. This includes characterizing the uncer-
tainty of climate projections for each behavioral theory and its implementation, as well as
for integrated models that consider human behavior at individual and group levels.

2. Differentiate climate impacts on humans across physical regions of the world: The
regional distribution of GHG emissions does not align with the regional distribution of
global climate change impacts. Regions with low emissions that experience high impacts
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may have little ability to reduce global emissions, whereas some regions with high
emissions may not experience sufficient impacts to alter perceptions of climate change
and emissions behavior. Regional discordance in impacts of climate change and sources
of anthropogenic GHG emissions will likely lead to regionally unique human responses
that interact through social contagion and adoption of policy.

3. Incorporate the influence of diverse social systems: Social models should consider the
political structures, wealth distribution, cultural worldviews, and belief systems of diverse
populations that vary globally and will likely interact with the behavioral theory chosen
and the spatial patterns of climate change impacts to alter human behavior. The social
models can be informed by global or regional surveys, such as public opinion regarding
support for geoengineering (Visschers et al. 2017) and behavioral data, such as mobile
phone data (Lu et al. 2016).

4. Improve the representation of how perceptions and behavior shape GHG emissions:
Further analysis is needed on how individuals and groups respond to physical climate
and social factors and to implementation of emissions-related policies that potentially
alter investments in renewable energy, subsidies for emissions-intensive livestock, and
infrastructure to support electric vehicles. Different regional policy responses contribute
to increases or decreases in emissions.

This proposed set of model development goals will lead to SoCMs evolving from stylized
conceptual models to fully parameterized, operational models that provide robust projections
of climate change. SoCMs will more fully characterize the uncertainty in climate change
projections by integrating uncertainties in both the social and physical systems. Although

Fig. 1 Schematic diagram of the coupling of climate and social models. The climate system is forced by
atmospheric concentrations of greenhouse gasses (GHGs), leading to climate change that differently impacts
physical regions of the globe through mean and extreme climate change. Regional impacts influence perception
of risk from climate change, which is processed by the social system that overlaps a physical region and its
associated cultural context. The interactions of social systems from multiple regions with alternative behavioral
models influence emissions behaviors, through regional policies and individual human behaviors. GHG emis-
sions then drive atmospheric concentrations of GHGs that feed back into the climate system. The choice of
climate and behavioral model, parameterized for different cultural or political social systems, leads to a multi-
model set of simulations with differing emissions and regional impacts
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SoCMs may initially lead to increased uncertainty in climate projections, they will more
realistically capture the range of likely climate futures and allow the scientific community to
directly address critical model deficiencies that may eventually reduce climate uncertainties
(Carslaw et al. 2018). Data collection that addresses these deficiencies could then be prioritized
so as to quickly reduce the overall uncertainty of SoCMs. The coupling of physical and social
processes may also identify complex feedbacks that potentially reduce overall uncertainty in
projected climate change. For example, extreme climate change may motivate strong human
behavioral responses to reduce GHG emissions, while more moderate climate change may
lead to decreased mitigation efforts. The overall result might then be to constrain the likely
range of projected climate change away from extreme high or low ranges. Importantly, an
analysis of SoCMs would guide mitigation efforts by identifying points of high leverage, e.g.,
those components of the model where small changes in parameters lead to comparatively large
changes in projected climate change. The emergence of SoCMs will allow for a more complete
examination of climate change uncertainty and also enable the partitioning of climate change
uncertainty into irreducible components intrinsic to the climate and social systems and
components that can be reduced with continued model development and incorporation of
human behavioral data (Lorenz 2006; Beckage et al. 2011).

The complexity of the human response to climate change suggests the development of a
Social Sciences Model Intercomparison Project (SMIP) that focuses on human social and
behavioral systems. SMIP would be similar to the Coupled Model Intercomparison Project that
has developed a common experimental protocol and set of forcing scenarios to project future
climate change, providing the basis for the work of the Intergovernmental Panel on Climate
Change (Taylor et al. 2012). The successes of climate models stem, in large part, from the
process by which the models were created: parallel teams tackling the same set of problems
from an array of perspectives and with a diverse set of approaches, then comparing and
contrasting the relative strengths and weaknesses of each modeling choice. This competitive
collaboration led to the emergence of the modern set of climate models. The creation of
SoCMs would benefit from a similar framework that captures diverse perspectives and theories
in modeling human systems in relation to climate change. We encourage the parallel devel-
opment of diverse candidate models that can then be considered by the community and refined
based on their relative strengths. Whether this process leads to convergence to a small set of
models or a larger set of similarly appropriate but divergent models that could be employed in
concert to examine the role of human behavior in climate projections, the process itself would
enrich our understanding of the social dimensions of climate change and lead to better-
informed policies.

Incorporating human social models into climate models is an important next step in
projecting future climate change and its impacts. Critical questions concerning global climate
change involve humans and cannot be addressed in the absence of models that couple physical
and social systems: How will regional differences in GHG emissions and climate change
impacts modify future climate? What components of human social systems provide the most
leverage to curb GHG emissions? How might global climate change impacts on food
insecurity, migration, and international conflicts alter human perception of risk and influence
GHG emissions policies? We have learned about the rate, magnitude, and impacts of climate
change from physical models. The next step towards achieving a deeper understanding of
climate change is the integration of models of human behavior and social systems. This
integration of social and climate models will enhance our ability to understand, adapt to,
and mitigate climate change.
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Though daunting, similar efforts have been made to incorporate feedbacks between human
behavior and the environment. Models of social-ecological systems, for example, often include
human behavior and decision-making coupled with ecological processes on landscape or
watershed scales (Schlüter et al. 2012, 2017; Müller-Hansen et al. 2017). Similarly, the
dynamics of human behavior in an economic context have been modeled with respect to
environmental hazards and regional energy demand (Filatova 2015; Niamir et al. 2020). These
efforts can provide insights into modeling complex social systems, including human behavior
at various levels of granularity, that will help organize and streamline this process for SoCMs.
Given past advancements in climate modeling, the benefits of linking social models with
climate models may be greater than the marginal improvements that come from a continued
focus solely on the refinement of models of the physical climate system. The coupling of social
and climate models builds on the work of Meadows et al. (1972, 2004) and continues
pioneering efforts to integrate humans into Earth system models to assess our global impacts.
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