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Abstract The divergence among Earth system models in the terrestrial carbon cycle has prompted
interest in how to reduce uncertainty. Previous studies have identified model structural uncertainty
arising from process parameterizations and parameter values. The current study highlights the importance
of climate forcing in generating carbon cycle uncertainty. We use simulations in which three models
(Community Land Model version 4 (CLM4), CLM4.5, CLM5) with substantially different carbon cycles
are forced with two climate reconstructions (CRUNCEPv7, Global Soil Wetness Project 3 version 1
(GSWP3v1)) to examine the contributions of model structure and climate to uncertainty in the carbon cycle
over the period 1850–2014. Climate uncertainty for global annual net biome production exceeds one third of
total uncertainty (defined as the sum of climate and model structure uncertainty) in the first half of the
twentieth century, but declines after the 1950s. Global annual gross primary productivity, net primary
productivity, heterotrophic respiration, and vegetation and soil carbon stocks have substantial climate
uncertainty (relative to total uncertainty) throughout the simulation period. Climate forcing contributes
more than one half of total uncertainty for these carbon cycle fluxes and stocks throughout boreal North
America and Eurasia, some midlatitude regions, and in eastern Amazonia and western equatorial Africa
during the decade 2000–2009. Comparison with observationally based data sets of the carbon cycle using
model benchmarking methods provides insight into strengths and deficiencies among models and climate
forcings, but we caution against overreliance on benchmarking to discriminate among models. The
conceptualization of uncertainty arising from this study implies embracing multiple feasible model
simulations rather than focusing on which model or simulation is best.

1. Introduction

With the advent of Earth system models that simulate physical, chemical, and biological processes relevant
for climate, it is possible to move beyond climate prediction to consider Earth system prediction including
terrestrial and marine ecosystems and biogeochemical cycles (Bonan & Doney, 2018). The utility of Earth
system models for predicting ecological states and fluxes requires an understanding of the sources of uncer-
tainty in model simulations. For climate prediction, the sources of uncertainty can be ascribed to natural
variability, model structure, and socioeconomic scenarios, and uncertainty is assessed based on the spread
among an ensemble of simulations using analysis of variance (Hawkins & Sutton, 2009; Yip et al., 2011).
In this framework, natural variability is the unforced climate variability internal to the system and is deter-
mined for a particular model using a multimember ensemble of simulations in which themodel is initialized
with different states, thereby generating a spread of climate trajectories. Model structural uncertainty arises
from differences amongmodels and is assessed using amultimodel ensemble of simulations. Scenario uncer-
tainty arises from different depictions of forcings (e.g., greenhouse gas concentrations, land use, and land
cover change). As shown by Hawkins and Sutton (2009) for global mean surface air temperature, natural
variability is particularly important at time scales up to a few decades. Model structural uncertainty can also
be large, but scenarios are the largest source of uncertainty at multidecadal time scales. At regional scales,
natural variability is a larger source of uncertainty.

The same framework of natural variability, model structural uncertainty, and scenario uncertainty informs
carbon cycle projections generated by Earth system models. At decadal time scales, natural variability
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imparts large unforced variability in the terrestrial carbon cycle that prevents detection of forced change in
land carbon uptake at time scales less than a few decades (Lombardozzi et al., 2014). There is considerable
spread among CMIP5 Earth system model projections of terrestrial carbon uptake (Jones et al., 2013), and
model structural uncertainty, not scenarios, is the dominant contributor to uncertainty in global land carbon
uptake throughout the twenty‐first century (Hewitt et al., 2016; Lovenduski & Bonan, 2017).

The large divergence among Earth system models precludes a robust assessment of how the terrestrial car-
bon cycle might change in the future and has prompted much interest in methods to reduce carbon cycle
uncertainty. Structural differences among the terrestrial biosphere models used in Earth systemmodels pro-
duce divergent carbon cycle simulations (Huntzinger et al., 2013, 2017), and many studies have focused on
structural error resulting from incomplete understanding of how to appropriately represent ecosystem pro-
cesses and their responses to environmental change. For example, studies have examined uncertainty in
terms of particular process parameterizations such as ecosystem nitrogen losses (Meyerholt & Zaehle,
2018; Thomas et al., 2013), biological nitrogen fixation (Wieder et al., 2015), soil organic matter decomposi-
tion (Koven et al., 2015; Wieder et al., 2018), photosynthetic temperature acclimation (Lombardozzi et al.,
2015), and photosynthetic triose phosphate utilization (Lombardozzi et al., 2018). Structural uncertainties
are particularly evident in determining simulated responses to elevated concentrations of atmosphere CO2

(Huntzinger et al., 2017; Wieder et al., 2019; Zaehle et al., 2014). Other studies have examined parameter
uncertainty within a particular model (Booth et al., 2012; Boulton et al., 2017; Li et al., 2018; Poulter
et al., 2010).

Earth system models differ in their climate projections, and climate also contributes to carbon cycle spread.
Nishina et al. (2015) forced several terrestrial biosphere models with climate projections for the twenty‐first
century obtained from several different climate models run with multiple scenarios. Using analysis of var-
iance, they found a dominant contribution to carbon cycle uncertainty from model structure, although
the particular climate forcing also contributed to uncertainty. Two studies using a single terrestrial biosphere
model (LPJ‐GUESS) point to the importance of climate forcing. Ahlström et al. (2017) forced LPJ‐GUESS
with the climate output from 15 CMIP5 models for the period 1850–2100 and found that differences in
climate contributed substantially to carbon cycle uncertainty. Wu et al. (2017) forced LPJ‐GUESS with six
alternative historical climate data sets for the twentieth century and found considerable spread in gross pri-
mary productivity. Simulations with JULES using several different forcing data sets also found that the par-
ticular climate forcing contributes to uncertainty in gross primary production over the period 2001–2010
(Slevin et al., 2017). Conversely, comparison of three terrestrial biosphere models (Community Land
Model version 4 (CLM4), JULES, ORCHIDEE) in both uncoupled simulations forced with the CRUNCEP
climate reconstruction and in coupled simulations with their host Earth system model found that gross pri-
mary production in the coupled simulations was not that different from the uncoupled simulations over the
period 1990–2009 (Anav et al., 2015).

In this study, we further examine the role of climate in generating carbon cycle uncertainty. We utilize a
suite of carbon cycle simulations in which three terrestrial biosphere models are forced with two commonly
used reconstructions of historical climate over the industrial era (1850–2014) to examine the contributions of
model structure and climate data to uncertainty in the carbon cycle. Our results show the importance of
climate forcing in generating carbon cycle uncertainty. Comparison of the simulations with observationally
based data products highlights challenges in using model benchmarking (Collier et al., 2018) to reduce
uncertainty. From these results, we develop insights into the sources of carbon cycle uncertainty, how uncer-
tainty can be reduced, and how model improvements should be judged.

2. Methods
2.1. Model Simulations

The three models used for this study are versions of the CLM that differ markedly in their carbon and
nitrogen cycles (Wieder et al., 2019). CLM4 has strong nitrogen downregulation of potential (nonnitrogen
limited) gross primary production (GPP), low soil carbon stocks, a weak CO2 fertilization response, and a
weak terrestrial carbon sink. CLM4.5 has improved GPP (but still using the CLM4 concept of nitrogen down-
regulation), vertically resolved soil carbon with much larger soil carbon stocks compared with CLM4, and a
larger terrestrial carbon sink. CLM5 allows for flexible vegetation C:N in response to nitrogen availability so
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that photosynthetic capacity directly varies with leaf nitrogen (thereby eliminating the CLM4 and CLM4.5
concept of potential GPP), optimally allocates leaf nitrogen through the canopy, and includes the carbon cost
of nitrogen uptake. There is an overall trend from CLM4 to CLM4.5 and CLM5 characterized by a poleward
shift in carbon uptake, less sensitivity to nitrogen addition, and a larger CO2 fertilization response (Wieder
et al., 2019).

The simulations reported in the current study are land only, inwhich themodels are forcedwith two different
climate reconstructions. The CRUNCEP forcing has been used in the Global Carbon Project (Le Quéré et al.,
2016, 2018), the companion study TRENDY (Sitch et al., 2015), and the MsTMIP model intercomparison
(Huntzinger et al., 2013); here we use CRUNCEPv7. The GSWP3v1 forcing is used in land‐only simulations
for the LandUseModel Intercomparison Project (Lawrence et al., 2016) and the Land Surface, Snow and Soil
moisture Model Intercomparison Project (van den Hurk et al., 2016).

The six simulations (three models with two climate forcings) span the period 1850–2014. Land use and land
cover change, atmospheric CO2 concentration, and nitrogen deposition are specified from transient data
sets. The GSWP3 and CRUNCEP climate forcings only extend back to 1901; the 20‐year period 1901–1920
is cycled for the period 1850–1900. Initial conditions for all simulations were generated by spinning‐up
the models to steady state for 1850, in which land cover, atmospheric CO2 concentration, and nitrogen
deposition are for the year 1850 and climate forcing is for 1901–1920.

2.2. Analyses

The six simulations (three models with two climate forcings) were analyzed to partition total uncertainty
into climate and model contributions using fixed‐effect analysis of variance for two groups (climate) with
n= 3models within each group. The within‐group variation arises frommodel differences, and the between
group variation is from climate. This is equivalent to the methodology introduced by Hawkins and Sutton
(2009) and extended by Yip et al. (2011) in a formal analysis of variance decomposition. Total uncertainty
is the variance across the six‐member ensemble, climate uncertainty is the variance of the GSWP3 and
CRUNCEP multimodel means, and model uncertainty is the average of the multimodel variances for
GSWP3 and CRUNCEP. We use standard deviation (i.e., the square root of variance) to illustrate the abso-
lute magnitude of uncertainty (so as to have the same units as the mean), but follow the convention of using
variance to ascertain the relative contribution of models and climate forcing to total uncertainty.

The simulations were assessed using the ILAMB benchmarking package (Collier et al., 2018). Scores gener-
ated by ILAMB assess the carbon cycle in terms of vegetation biomass, burned area, gross primary produc-
tion, leaf area index, net biome production, net ecosystem production, ecosystem respiration, and soil
carbon, and higher scores indicate greater fidelity to the benchmarking data sets. Collier et al. (2018) provide
details on the scoring methodology and data sets. Here we used a subset of the ILAMB benchmarks. Global
net biome production (NBP) for 1959–2014 is from the Global Carbon Project (Le Quéré et al., 2016) and is
taken as the balance between fossil fuel emissions (FF), atmospheric growth rate (ATM), and ocean uptake
(OCE) so that NBP = FF – ATM – OCE. As in Le Quéré et al. (2016), the estimated uncertainty (Pg C/year)
for each year is (0.05 × FF)2 + (0.1)2 + (0.5)2, in which FF uncertainty is proportional to the emissions and
ATM (0.1 Pg C/year) and OCE (0.5 Pg C/year) uncertainties are constant. Hoffman et al. (2014) provide esti-
mates for the historical period 1850–2010. GPP, ecosystem respiration (ER), and net ecosystem production
(NEP = GPP – ER) are from the GBAF data set (Jung et al., 2010). Vegetation carbon (VEGC) is evaluated
for the tropics (Saatchi et al., 2011) and also using two global data sets (GEOCARBON, GlobalCarbon) as
described by Collier et al. (2018). Soil carbon (SOMC) is evaluated using the Harmonized World Soil
Database as processed by Todd‐Brown et al. (2013) and also for permafrost regions using the Northern
Circumpolar Soil Carbon Database (Hugelius et al., 2013). The simulations were compared with CMIP5
models to determine if the spread among our simulations is comparable to that of the CMIP5 multimodel
ensemble (Anav et al., 2013).

3. Results
3.1. Comparison With CMIP5 Models

The six CLM simulations capture the spread in the carbon cycle compared with CMIP5 models. The CMIP5
models have a large spread in NBP over the period 1959–2005 and span the estimated historical uncertainty;
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the CLM simulations have a similar spread (Figures 1a and 1b). Few of the CMIP5 models fall within the
observationally based uncertainty estimates for the period 1850–2005; the CLM simulations have a
similarly large spread (Figures 1c and 1d). GPP has a comparable range as the CMIP5 models, excluding
six models with anomalously large GPP (Figure S1a in the supporting information). VEGC and SOMC
have a narrower range compared with the CMIP5 models, but some of those models have anomalously
large pools (Figure S1b in the supporting information).

3.2. Model Benchmarking

The ILAMB benchmarking shows a progressive improvement in the carbon cycle from CLM4 to CLM4.5
and CLM5, but also points to the opportunities and challenges in discriminating among models

Figure 1. Cumulative land carbon sink (NBP) for CMIP5 models (1850–2005) and CLM (1850–2014). CMIP5 data are for the 12 models used in Lovenduski and
Bonan (2017). CLM simulations are for the three model versions (CLM4, CLM4.5, CLM5) with CRUNCEP and GSWP3 forcing. Shown are comparisons with
the Global Carbon Project (Le Quéré et al., 2016) for (a) CMIP5 (1959–2005) and (b) CLM (1959–2014). The thick black line shows the historical estimate, and the
shading denotes the estimated uncertainty from the Global Carbon Project. CMIP5 models are color coded based on fidelity to the Global Carbon Project, as
described by Lovenduski and Bonan (2017). Also shown are comparisons with Hoffman et al. (2014) for (c) CMIP5 and (d) CLM over the full simulation period. The
historical carbon budget is for the period 1850–2010. Uncertainty estimates are from Hoffman et al. (2014).

10.1029/2019GB006175Global Biogeochemical Cycles

BONAN ET AL. 1313



(Figure 2). CLM4 has the lowest benchmarking scores, CLM4.5 has higher scores, and CLM5 has the highest
scores. SOMC is a prominent exception and has a lower score for CLM5 compared with CLM4.5. GSWP3
results in scores for CLM4.5 and CLM5 that are generally comparable to or larger than CRUNCEP.
However, comparison of the absolute scores for CLM4.5 and CLM5 show that many of the differences in
scores are small (less than ±0.05 for VEGC, burned area, GPP, NEP, ER, and overall summary; see Table
S1 in the supporting information). Larger improvements are seen from CLM4.5 to CLM5 in leaf area
index and NBP but with degradation in SOMC. Summaries of particular strengths and weakness of model
versions and forcing data for NBP and component fluxes are presented below.

Over the period 1959–2014, CLM5 closely matches the Global Carbon Project estimate for global NBP and is
improved compared with CLM4 and CLM4.5 (Figure 1b). The difference between GSWP3 and CRUNCEP is
small compared with the differences among models, but all six simulations are within (or close to) the obser-
vationally based uncertainty. Over the full historical period 1850–2014, four of six simulations are within the
estimated uncertainty prior to midtwentieth century (Figure 1d). Differences among the four simulations
only emerge later in the twentieth century. CLM4.5 (CRUNCEP) and CLM5 (GSWP3) both are within the
uncertainty estimate for the late twentieth century. CRUNCEP reduces carbon uptake compared with
GSWP3, more so for CLM4 and CLM4.5 than for CLM5.

The strength and geographic location of the terrestrial carbon sink differs among models and climate for-
cings (Figure 3). For CLM4, the southern equatorial tropics is a small carbon sink during the latter half of
the twentieth century when forced with GSWP3, but is a source of carbon with CRUNCEP. With both for-
cings, CLM4.5 has a strong tropical sink throughout the twentieth century (weaker with CRUNCEP) and
a small northern sink (stronger with CRUNCEP). CLM5 has a smaller tropical sink compared with
CLM4.5 (stronger for CRUNCEP than for GSWP3) and has a northern high‐latitude carbon sink similar
to CLM4.5 (stronger for GSWP3 than for CRUNCEP).

Figure 2. ILAMB carbon cycle summary scores for CLM4, CLM4.5, and CLM5 forced with GSWP3 and CRUNCEP. Shown are (a) the absolute score and (b) the
relative score for various pools and fluxes.
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Figure 3. Zonal mean plots of the cumulative land carbon sink over the period 1850–2014 for (top row) CLM4, (middle row) CLM4.5, and (bottom row) CLM5
forced with (left column) GSWP3 and (right column) CRUNCEP. Positive values show a carbon sink, and negative values show a carbon source.
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GSWP3 reduces annual GPP compared with CRUNCEP in many regions of the world (Figure 4). CLM4 is
biased high in the tropics, much of the Northern Hemisphere midlatitudes, and in boreal North America;
GSWP3 reduces these biases compared with CRUNCEP. CLM5 has a large negative bias in the tropics
and a positive bias throughout much of boreal North America and Eurasia. By reducing GPP, GSWP3
increases the tropical negative bias and reduces the boreal positive bias compared with CRUNCEP.
CLM4.5 is similar to CLM5, but with smaller boreal GPP. A prominent exception occurs in Alaska and
NW Canada, where GPP increases with GSWP3 (especially for CLM5). ILAMB benchmarking shows that
CLM4.5 and CLM5 are improved compared with CLM4, especially in terms of bias and spatial distribution
scores (Table S2 in the supporting information). Differences between CLM4.5 and CLM5 and between
GSWP3 and CRUNCEP are less evident.

Differences among models and climate forcings in annual net primary production (NPP) and heterotrophic
respiration (HR) are similar to GPP. Annual NPP in the tropics and Northern Hemisphere midlatitudes
decreases from CLM4 to CLM5, but northern high‐latitude NPP increases (Figure S2 in the supporting infor-
mation). GSWP3 decreases NPP compared with CRUNCEP in many regions. HR follows similar patterns as
NPP, and GSWP3 decreases HR compared with CRUNCEP in many regions (Figure S3 in the supporting
information). However, GSWP3 increases NPP and HR in Alaska and NW Canada, most prominently for
CLM5. The sensitivity of NPP and HR to climate forcing is robust across models in the tropics, but is larger
in northern high latitudes for CLM5.

Figure 4. Annual gross primary production (GPP) for the period 1982–2008. Shown are the (top row) ILAMB benchmark data set; (middle row) model biases
for CLM4, CLM4.5, and CLM5 with the GSWP3 forcing; and (bottom row) the difference with CRUNCEP for each model. The benchmark data set is from
Collier et al. (2018), as described in section 2.2. Bias is calculated as the difference between the model and the benchmark. Positive values (red) show where the
model exceeds the benchmark. Climate forcing differences for eachmodel are expressed as GSWP3–CRUNCEP. Positive values (red) showwhere GSWP3 values are
greater than CRUNCEP.
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All three models are biased low in NEP throughout much of the world (Figure 5). With GSWP3, CLM5 simu-
lates larger Northern Hemisphere middle‐ and high‐latitude NEP compared with CLM4 and CLM4.5, seen
in a reduced negative bias in Europe and SE United States. CLM5 NEP is generally smaller for GSWP3 than
for CRUNCEP. CLM4 and CLM4.5 are less sensitive to climate forcing. CLM5 performs better than CLM4
and CLM4.5 in all ILAMB metrics (Table S3 in the supporting information). The primary difference in
benchmarking scores is among models. There is less difference due to climate forcing, but GSWP3 produces
a poorer seasonal cycle across all models.

There is a shift across models from CLM4 to CLM5 in terms of less tropical VEGC and more boreal VEGC
(Figure S4 in the supporting information). The reduction in tropical biomass reduces a positive bias in the
models (not shown). CLM5 has a large positive biomass bias in boreal North America and much of
Eurasia (not shown); CLM4.5 has a smaller positive bias. Similar to GPP and NPP, GSWP3 decreases
VEGC compared with CRUNCEP (except in Alaska and NW Canada), more so for CLM5. CLM5 has higher
ILAMB scores than CLM4 and CLM4.5 when compared with the tropics and GlobalCarbon data sets, and
GSWP3 improves scores (Table S4 in the supporting information). Model and climate differences are smaller
when compared with GEOCARBON.

CLM5 simulates more SOMC in northern high latitudes compared with CLM4 and CLM4.5 when forced
with GSWP3 (Figure S5 in the supporting information). GSWP3 decreases SOMC compared with
CRUNCEP, most prominently for CLM5 in the arctic and less so for CLM4 and CLM4.5. CLM4.5 has the
highest ILAMB scores in permafrost regions, and GSWP3 produces a slightly better simulation (NCSCD;
Table S5 in the supporting information). For CLM5, however, GSWP3 is much better than CRUNCEP.
CLM4 significantly underestimates SOMC in the arctic compared with NCSCD, resulting in a low overall

Figure 5. Same as in Figure 4 but for annual net ecosystem production (NEP).
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ILAMB score. Similar results are seen globally, and GSWP3 improves
scores for CLM4.5 and CLM5 (HWSD; Table S5 in the
supporting information).

3.3. Climate Differences

GSWP3 and CRUNCEP have noticeable differences in climate, as shown
in Figure 6 for the period 2000–2009. Temperature differs by less than
0.1 °C in most regions of the world. Precipitation differences are promi-
nent in tropical South America, SE Asia, and Alaska and NW Canada.
Specific humidity, downwelling solar radiation, and downwelling long-
wave radiation show more widespread differences between the two data
sets. GSWP3 has smaller specific humidity in eastern Amazonia compared
with CRUNCEP. Differences are particularly evident during boreal sum-
mer, when GSWP3 has smaller specific humidity across much of the
Northern Hemisphere middle and high latitudes except for central
North America and SE Asia (not shown). Solar radiation is less in
GSWP3 over much of the Northern Hemisphere but is larger in eastern
Amazonia. Longwave radiation is larger over much of the Northern
Hemisphere, but is smaller in the tropics and subtropics. For CLM5, the
forcing differences result in soils that are several degrees warmer across
the arctic for GSWP3 compared with CRUNCEP (Figure S6 in the
supporting information).

3.4. Uncertainty Analysis

Total uncertainty in simulated global NBP is large relative to the mean
and varies considerably from year to year (Figure 7). Climate uncertainty
is largest prior to the 1950s (contributing up to 80% or more of total uncer-
tainty in some years), but individual years thereafter can also have large
climate uncertainty (20% or more of total uncertainty in the 1980s–
2010s). Model uncertainty (as an absolute amount) can also vary consider-
ably between years. NBP has largest total uncertainty in the tropics (where
the mean is largest), but uncertainty is also comparably large in SE Asia
and in boreal North America and Eurasia (Figure 8). Climate uncertainty
as a fraction of total uncertainty can be locally large, and NWCanada, por-
tions of the Russian arctic, and eastern Amazonia stand out regionally.

GSWP3 decreases simulated global GPP, NPP, HR, NEP, VEGC, and
SOMC compared with CRUNCEP, and climate forcing contributes con-
siderably to total uncertainty in these components of the carbon cycle
(Figure 9). The total uncertainty for GPP is 10–12 Pg C/year and declines
slightly over time with less model uncertainty (Figure 9a). Climate uncer-
tainty is constant (about 6 Pg C/year) and increases to about 40–50% of
total uncertainty in the 1990s and 2000s. Total uncertainty for NPP and
HR is about 3–4 Pg C/year and arises mostly from climate forcing
(Figures 9b and 9c). Total uncertainty for NEP is about 1–2 Pg C/year dur-
ing the latter half of the twentieth century and is large relative to the mean
(Figure 9d). Climate uncertainty is constant and is generally a small con-
tribution to total uncertainty after the 1950s, but prior to that time indivi-
dual years can have a large contribution of climate forcing to total
uncertainty (similar to NBP). In addition to decreasing VEGC compared
with CRUNCEP (Figure 9e), GSWP3 reduces the spread among models
(note the similarity of CLM4 and CLM5 with GSWP3 but not with
CRUNCEP). Total uncertainty is 60–80 Pg C and arises mostly from cli-
mate forcing. Total uncertainty for SOMC is about 460 Pg C and arises

Figure 6. Climate differences between GSWP3 and CRUNCEP for the per-
iod 2000–2009. Shown are annual mean surface air temperature (TBOT),
precipitation (PREC), surface specific humidity (QBOT), total incoming
solar radiation (FSDS), and incoming longwave radiation (FLDS). Positive
values (red) show where GSWP3 values are greater than CRUNCEP.
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mostly from models (Figure 9f). Climate uncertainty is constant and is about 20% of total uncertainty.

There is a distinct geographic pattern to carbon cycle uncertainty in the CLM simulations. The largest GPP
total uncertainty occurs in the tropics (where the mean is largest) and also SE United States and SE Asia
(Figure 10a). However, Alaska, Scandinavia, and portions of the Siberian arctic also have large uncertainty.
The contribution of climate to total uncertainty can be regionally large, most prominently in boreal North
America, boreal Eurasia, eastern Amazonia, and western equatorial Africa where climate uncertainty
exceeds 60% of total uncertainty. Uncertainty in NPP (Figure 10b) and HR (Figure 10c) have a similar geo-
graphic pattern as GPP, but with a larger contribution of climate uncertainty in SE United States and SE
Asia. Total uncertainty in NEP is large in central North America, Europe, and SE Asia (Figure 11a). The con-
tribution of climate to total uncertainty is similar to that for NBP. Total uncertainty in VEGC is large in forest
ecosystems in the tropics, SE Asia, and boreal North America and Eurasia, where the mean is large
(Figure 11b). Climate uncertainty generally follows a similar spatial pattern as NPP and is regionally large,
most prominently in parts of boreal North America, boreal Eurasia, SE United States, Amazonia, and wes-
tern equatorial Africa where climate uncertainty exceeds 60% of total uncertainty. SOMC total uncertainty is
largest in northern high latitudes where the mean is largest (Figure 11c). Climate uncertainty generally fol-
lows a similar spatial pattern as NPP, but is more widespread in the tropics and northern latitudes, and
exceeds 60% of total uncertainty in the tropics, SE United States, SE Asia, and parts of boreal North
America and Eurasia.

4. Discussion

The quest to reduce uncertainty in terrestrial carbon cycle simulations commonly focuses on biogeochemical
process parameterizations and parameter estimation. Some studies have begun to examine the importance
of climate forcing in generating carbon cycle uncertainty (Ahlström et al., 2017; Anav et al., 2015; Nishina
et al., 2015; Slevin et al., 2017; Wu et al., 2017), and the results of the present study provide evidence that

Figure 7. Uncertainty analysis for global net biome production (NBP) for the period 1850–2014. Shown are (a) global annual NBP for the six simulations; (b) cli-
mate, model, and total uncertainty; and (c) the partitioning of total uncertainty between model and climate forcing (as a fraction of total variance). Uncertainty is
quantified using analysis of variance as described in section 2.2.

Figure 8. Uncertainty analysis for net biome production (NBP) for the period 2000–2009. Shown are the (left column) multimodel mean, (middle column) total
uncertainty, and (right column) climate uncertainty expressed as a fraction of total uncertainty.

10.1029/2019GB006175Global Biogeochemical Cycles

BONAN ET AL. 1319



Figure 9. Carbon cycle uncertainty for the period 1850–2014 for (a) gross primary production (GPP), (b) net primary production (NPP), (c) heterotrophic respira-
tion (HR), (d) net ecosystem production (NEP), (e) vegetation carbon (VEGC), and (f) soil carbon to a depth of 1 m (SOMC). Shown are (left column) the six
simulations; (middle column) climate, model, and total uncertainty; and (right column) the partitioning of total uncertainty between model and climate forcing.
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uncertainty in climate forcing can exceed uncertainty arising from model structure, even when terrestrial
biosphere models are forced with best‐estimate climate reconstructions over the industrial era. Our six‐
member ensemble of three versions of CLM (CLM4, CLM4.5, CLM5) forced with two climate reconstruc-
tions (GSPW3, CRUNCEP) captures the spread of CMIP5 Earth system model simulations (Figures 1 and
S1 in the supporting information), suggesting that our results are generalizable across a wider range of mod-
els. Our results emphasize that although model uncertainty is large, climate uncertainty also makes an
important contribution to the total carbon cycle uncertainty. Within this ensemble of models, the ILAMB
benchmarking tool provides valuable insights into particular strengths and deficiencies in model versions
and climate forcings (Figure 2), but we also caution against an overreliance on these scores in
evaluating models.

4.1. Climate Forcing Versus Model Uncertainty

Our simulations reveal significant model uncertainty, but also highlight that climate forcing is a large source
of uncertainty in the carbon cycle even when constrained by best climate reconstructions over the industrial
era. Climate uncertainty is large for global NBP prior to the 1950s, but can also be large for particular years in
the 1980s–2010s (Figure 7). Climate uncertainty as a fraction of total uncertainty can be locally large, espe-
cially in NW Canada, portions of the Russian arctic, and eastern Amazonia (Figure 8). Other terms in the
global carbon cycle (GPP, NPP, HR, VEGC, SOMC) also have substantial climate uncertainty (Figure 9).
Climate forcing contributes more than 60% of total uncertainty for these terms throughout boreal North
America and Eurasia, in eastern Amazonia and western equatorial Africa, and also in SE United States

Figure 10. Carbon cycle uncertainty for the period 2000–2009. Shown are the (left column) multimodel mean, (middle column) total uncertainty, and (right col-
umn) climate uncertainty expressed as a fraction of the total uncertainty for (a) gross primary production (GPP), (b) net primary production (NPP), and (c) het-
erotrophic respiration (HR).
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and SE Asia (Figures 10 and 11). Other climate reconstructions are also available, but not all cover the same
time period. Wu et al. (2017), for example, used six climate reconstructions in their analysis of GPP with
LPJ‐GUESS. CLM5 simulations using the WFDEI/WATCH reconstruction (Weedon et al., 2011) produce
a different carbon cycle compared with GSWP3 and CRUNCEP (see the data availability for data access).
Slevin et al. (2017) used several reconstructions, including variants of WFEDI/WATCH. These additional
climate reconstructions would likely alter our estimated climate uncertainty.

The GSWP3 and CRUNCEP data sets differ in forcing variables that affect the carbon cycle, especially spe-
cific humidity, solar radiation, and longwave radiation (Figure 6). A main difference between climate for-
cings across all three models, seen both globally (Figure 9) and regionally (Figures 4, 5, S2, and S3), is a
less vigorous carbon cycle (reduced GPP, NPP, HR, and NEP) for GSWP3 compared with CRUNCEP. This
also manifests in terms of reduced VEGC and SOMC (Figures 9, S4, and S5). An important exception is
Alaska and NW Canada, where GPP, NPP, HR, NEP, and VEGC (but not SOMC) are larger for GSWP3.
However, NBP shows the opposite response, and CRUNCEP reduces global NBP compared with GSWP3
(Figure 1d). There is also a large difference between models and climate forcings in terms of the strength
of tropical versus boreal carbon sinks (Figure 3). One noteworthy point is that CLM5 is more sensitive to cli-
mate forcing in boreal North America and Eurasia than is CLM4.5 (see GPP, NPP, HR, and VEGC), and
SOMC is particularly sensitive to climate forcing in permafrost regions (seen also in the large CLM5 soil tem-
perature differences between GSWP3 and CRUNCEP; Figure S6 in the supporting information), suggesting
that models likely vary in the sensitivity of the carbon cycle to climate. This could relate to different mean
states rather than parameterization differences among models, although the exact cause is unclear.

Figure 11. Same as in Figure 10 but for (a) net ecosystem production (NEP), (b) vegetation carbon (VEGC), and (c) soil organic matter carbon to a depth of 1 m
(SOMC).

10.1029/2019GB006175Global Biogeochemical Cycles

BONAN ET AL. 1322



4.2. Model Evaluation

The different carbon cycle simulations among models and climate forcings prompt the question of whether
observational data sets can be used to discriminate among the simulations. The generational development of
CLM shows increasing fidelity to many observationally based data sets, and ILAMB benchmarking quanti-
fies the improvements in model performance across CLM4, CLM4.5, and CLM5 and between climate for-
cings (Figure 2 and Table S1 in the supporting information). In general, CLM5 has higher ILAMB scores
compared with CLM4 and CLM4.5, and GSWP3 scores for CLM4.5 and CLM5 are comparable to or higher
than CRUNCEP. SOMC is an exception and has a lower benchmarking score for CLM5 than for CLM4.5.
While the tendency among modelers will be to use ILAMB summary scores (Figure 2b) to demonstrate
model improvement or to rankmodels in their performance, Collier et al. (2018) caution against interpreting
too much into the absolute ILAMB scores. Indeed, our comparisons amongmodels and climate forcings sug-
gest that overreliance on the overall summary scoring may provide misguided confidence in model
performance at the exclusion of a lower scoring model. Careful analysis of the component metrics that
determine the overall scoring is necessary, as is an assessment of spatial biases. Observationally based data
products provide a necessary constraint on models, but inference about which version of CLM and which
climate forcing is best depends on region and the particular variable of interest. Moreover, the ILAMB
analysis assigns relative weights to each data set to qualitatively account for uncertainty in the data sets
(Collier et al., 2018), but better methods to quantify data set uncertainty and utilize the uncertainty in the
benchmarking scores are required and are a priority for ILAMB.

Rather than ranking models or weighting models based on benchmarking scores, an alternative use of
ILAMB benchmarking is to ascertain which models provide equally plausible results (and conversely which
models are likely implausible), particularly in light of observational uncertainty. In this context, CLM4 is a
different class of model than CLM4.5 and CLM5, with consistently lowest benchmarking scores for various
aspects of the carbon cycle (Figure 2 and Table S1 in the supporting information). Perturbation experiments
that examine the response of the three models to elevated CO2 and nitrogen addition also point to deficien-
cies in CLM4 compared with CLM4.5 and CLM5 (Wieder et al., 2019). However, improvements between
CLM4.5 and CLM5 are more nuanced. ILAMB, for example, assigns CLM5 much higher scores for NBP
compared with CLM4.5 (GSWP3, 0.87 versus 0.63; CRUNCEP, 0.84 versus 0.69; Table S1 in the supporting
information), but analysis of the complete time series over the historical period (1850–2014) shows that both
CLM4.5 (CRUNCEP) and CLM5 (GSWP3) are within the estimated uncertainty (Figure 1d).

The benchmarking analyses of GPP and VEGC also highlight the need for caution when evaluating models.
The overall ILAMB scores for GPP have small differences between CLM4.5 and CLM5 and between GSWP3
and CRUNCEP for these two models (less than 0.01; Table S1 in the supporting information), but this masks
important regional differences that are evident in ILAMB only upon careful examination of the spatial diag-
nostics it generates. CLM5 exacerbates a low GPP bias in the tropics and a high GPP bias in boreal regions
compared with CLM4.5 (Figure 4). GSPW3 reduces GPP, enhancing the low bias in the tropics but improv-
ing the high boreal bias (a prominent exception is Alaska and NWCanada). Despite these GPP biases, CLM5
has improved NEP scores in the ILAMB benchmarking (Figure 2 and Table S1 in the supporting informa-
tion). Biases in GPP propagate to affect vegetation biomass. CLM5 simulates more VEGC than CLM4.5 in
boreal forests but less in the tropics (Figure S4 in the supporting information). ILAMB benchmarking shows
improved VEGC for CLM5 compared with CLM4.5 (Figure 2 and Table S1 in the supporting information),
but this varies regionally and relates to differences in GPP between models. CLM5 reduces a positive tropical
biomass bias compared with CLM4.5, and GSWP3 reduces the tropical bias compared with CRUNCEP, so
that the ILAMB score substantially improves in the tropics (Table S4 in the supporting information), but this
occurs in part because CLM5 has low GPP in the tropics. Conversely, higher GPP with CLM5 accentuates a
positive biomass bias in boreal North America and Eurasia and reduces a negative bias in Siberia.
Comparison of ILAMB scores for the GEOCARBON and GlobalCarbon data sets gives an indication of
the uncertainty in the observational data sets and leads to different inferences about model performance; dif-
ferences among models are less evident for GEOCARBON (Table S4 in the supporting information).

Soil carbon is a key metric of the global carbon cycle, but one in which CLM5 is prominently deficient in
terms of carbon stocks compared with CLM4.5 (Figure 2 and Table S1 in the supporting information).
The primary difference between models is in northern high latitudes, where CLM5 simulates more SOMC
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compared with CLM4.5 (Figure S5 in the supporting information). In this region, CLM5 is strikingly more
sensitive to climate forcing than is CLM4.5, with substantially less SOMC for GSWP3 compared with
CRUNCEP. This relates to soils that are several degrees warmer with GSWP3 compared with CRUNCEP
(Figure S6 in the supporting information). As a consequence, CLM5 forced with CRUNCEP has large
positive biases in SOMC throughout a broad region encompassing Alaska and western Canada and also in
Siberia; GSWP3 reduces these biases. This is seen in the ILAMB scoring for CLM5, which is markedly better
with GSWP3 compared with CRUNCEP (see NCSCD in Table S5 in the supporting information). In support
of this, CLM5 forced with CRUNCEP likely produces soils that are too cold. Moreover, the ILAMB
benchmarking focuses on SOMC stocks. A better metric is apparent soil carbon turnover times.

The notion of how to define whether a model is good likely needs to expand beyond benchmarking analysis.
Prentice et al. (2015), for example, argued that models must balance reliability (the model must produce
correct output), robustness (the results are not overly sensitive to specific assumptions or parameters), and
realism (the necessary processes are represented in sufficient detail). Greater process complexity may
increase realism but reduce reliability and robustness. Bradford et al. (2016) made just such a point with
regard to soil carbon. CLM5, with greater process richness, can be said to be more realistic than CLM4.5,
but that authenticity to process detail may come with greater uncertainty. For example, CLM4.5 uses
prescribed values of the photosynthetic parameters Vcmax and Jmax obtained from trait databases. This
captures prevailing macroscale environmental constraints, but not seasonal or long‐term changes in these
parameters. CLM5 simulates prognostic Vcmax and Jmax based on dynamic leaf nitrogen concentration
and canopy optimization of nitrogen and thereby allows them to vary seasonally and annually. Rather than
being a prescribed constraint on the model, Vcmax and Jmax are an emergent test of the model. Yet other
factors not included in the model such as phosphorus availability may be needed to simulate realistic photo-
synthetic parameters (Norby et al., 2017).

4.3. Carbon Cycle Prediction

The desire to reduce carbon cycle uncertainty has focused attention on the large spread among models and
the need for observational data sets with which to constrain models. However, as Lovenduski and Bonan
(2017) showed, it is difficult to reduce uncertainty in CMIP5 carbon cycle projections, even when the models
are weighted based on fidelity to best estimates of NBP over the historical era. The present study further
shows the difficulty in reducing carbon cycle uncertainty, specifically, in this case, uncertainty arising from
differences in reconstructed climate over the industrial era. Many of the differences in climate forcing are
relatively small (a few grams per kilogram for specific humidity or a few tens of watt per square meter for
solar and longwave radiation; Figure 6), and it remains to be seen how similar the forcings must be to reduce
uncertainty. Simulations with LPJ‐GUESS suggest the importance of solar radiation and precipitation for
carbon cycle uncertainty in the tropics (Wu et al., 2017). The carbon cycle simulated by JULES is also sensi-
tive to reconstructed air temperature, precipitation, and solar radiation (Slevin et al., 2017). Differences in
solar radiation, in particular, affect simulated gross primary production by changing the balance between
Rubisco‐limited and light‐limited CO2 assimilation. Climate uncertainty is likely to be even larger in
Earth systemmodels that simulate divergent climates. Indeed, simulations with LPJ‐GUESS over the period
1850–2100 suggest that climate differences among Earth system models contribute substantially to carbon
cycle uncertainty (Ahlström et al., 2017).

The quest to reduce carbon cycle uncertainty is not simple; we do not yet have a complete understanding of
whence uncertainty arises, so how, then, can we reduce the uncertainty? Moreover, as Lovenduski and
Bonan (2017) suggested, there may be a limit below which uncertainty cannot be reduced. Model structure
and parameter estimation contribute to uncertainty. The present study shows that climate forcing also con-
tributes to such a limit. If this premise of irreducible uncertainty is correct, there is not a single exact solution
that models should strive to attain (thereby by definition reducing uncertainty) but rather a family of plau-
sible outcomes. The ILAMB benchmarking of the six simulations reported herein further supports such a
conclusion, and shows that some simulations may be easily categorized as deficient, but others may not
be so easily distinguished. This conceptualization of uncertainty implies embracing multiple feasible model
simulations rather than determining which single model is best or focusing on a single outcome. Beven
(2006) addressed this point in the context of hydrologic models with his equifinality thesis, but the same con-
cept applies to terrestrial biosphere models and the carbon cycle. Yet as Beven (2006) cautioned, it is easy to
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“interpret the resulting ambiguity of predictions as a failure (or at least an undermining) of the science.” The
carbon cycle community would benefit from a comprehensive discussion of uncertainty, what makes a
model good, and the goals of carbon cycle prediction.
Data and Model Availability
Model data are archived and publicly available at the UCAR/NCAR Climate Data Gateway, https://doi.org/
10.5065/d6154fwh. CLM5.0 is publicly available through the Community Terrestrial System Model (CTSM)
git repository (https://github.com/ESCOMP/ctsm).
Author Contribution
G.B.B. wrote the manuscript with contributions from all authors. D.L.L. and K.W.O. performed the simula-
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