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Abstract

Global estimates of the land carbon sink are often based on simulations by terrestrial biosphere
models (TBMs). The use of a large number of models that differ in their underlying hypotheses,
structure and parameters is one way to assess the uncertainty in the historical land carbon sink.
Here we show that the atmospheric forcing datasets used to drive these TBMs represent a
significant source of uncertainty that is currently not systematically accounted for in land carbon
cycle evaluations. We present results from three TBMs each forced with three different historical
atmospheric forcing reconstructions over the period 1850-2015. We perform an analysis of
variance to quantify the relative uncertainty in carbon fluxes arising from the models themselves,
atmospheric forcing, and model-forcing interactions. We find that atmospheric forcing in this set
of simulations plays a dominant role on uncertainties in global gross primary productivity (GPP)
(75% of variability) and autotrophic respiration (90%), and a significant but reduced role on net
primary productivity and heterotrophic respiration (30%). Atmospheric forcing is the dominant
driver (52%) of variability for the net ecosystem exchange flux, defined as the difference between
GPP and respiration (both autotrophic and heterotrophic respiration). In contrast, for
wildfire-driven carbon emissions model uncertainties dominate and, as a result, model
uncertainties dominate for net ecosystem productivity. At regional scales, the contribution of
atmospheric forcing to uncertainty shows a very heterogeneous pattern and is smaller on average
than at the global scale. We find that this difference in the relative importance of forcing
uncertainty between global and regional scales is related to large differences in regional model flux
estimates, which partially offset each other when integrated globally, while the flux differences
driven by forcing are mainly consistent across the world and therefore add up to a larger fractional
contribution to global uncertainty.

1. Introduction and accumulated in the atmosphere. Model- and

observation-based studies suggest that the remaining
During the last decade, about 45% of anthropo- term was shared among ocean (24%) and land (32%)
genic carbon dioxide (CO,) emissions remained since 1960 (Friedlingstein et al 2021). Together, the
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contribution of the ocean and terrestrial CO, uptake
nearly halves the increase in atmospheric CO,, damp-
ing the pace of climate change (Canadell et al 2021).
These sinks significantly increased since the middle
of the 20th century, mainly due to the acceleration
of the increase in CO, concentrations, caused by
fossil fuel emissions. However, carbon uptake pro-
cesses depend strongly on climate variability, espe-
cially for the terrestrial biosphere (Le Quéré et al 2009,
DeVries et al 2019). While the ocean sink grew from
1.14+0.4PgC-yr~!inthe 1960s to 2.8 & 0.4 PgC-yr~!
in 2011-2020, with an inter-annual variability of a
few tenths of PgC-yr—1, the land sink rose from 1.2 =+
0.5PgC-yr~! to 3.14+0.6 PgC-yr~!, but with inter-
annual variations up to 2PgC-yr~! (Friedlingstein
etal 2021).

Accurate evaluations of anthropogenic emissions,
atmospheric CO, levels and carbon cycle perturba-
tion are necessary to monitor, understand and predict
climate change. The Global Carbon Project (GCP)
has published an annual report since 2013 (Le Quéré
et al 2013, 2014, Friedlingstein et al 2020, 2021) that
quantifies the magnitude and uncertainty of the five
major components of the global carbon budget: fossil
fuel emissions (Eros ), emissions from land use change
(ELuc), the growth rate of atmospheric CO, (Gatm),
the ocean sink (Socean) and the land sink (Spanp).
In earlier analyses provided by the GCP, the ter-
restrial carbon cycle simulated by the terrestrial bio-
sphere models (TBMs, called by the authors Land
Biosphere Models or Dynamical Global Vegetation
Models) was not considered reliable enough to be
used in the report to estimate the land carbon sink
(Le Quéré et al 2009, Schaefer et al 2012, Todd-Brown
et al 2013). The land sink Spanp was hence diagnosed
indirectly as the residual of the other terms. How-
ever, the methodology was updated in the 2017 global
carbon budget (Le Quéré et al 2017), partly due to
improvements in carbon cycle representation (Collier
et al 2018, Lawrence et al 2019, Arora et al 2020,
Davies-Barnard et al 2020), but also because of evid-
ence of underestimation and uncertainty in the ocean
sink variability (Landschiitzer et al 2015, DeVries et al
2017). The global land sink is now estimated by the
multi-model mean of the TBM simulations, with the
budget imbalance term, By, representing residual
uncertainty and/or unexplained aspects of the actual
global carbon cycle.

To account for model construction, structural,
and parametric uncertainty, as many as 17 TBMs
were used to estimate Spanp by (Friedlingstein et al
2020). Simulations were run using a unified land
use change data set (LUH2; Hurtt ef al 2020), global
atmospheric CO, trend, and atmospheric climate for-
cing (CRUJRA; Harris 2019). Use of a single forcing
dataset for climatic forcing, however, means that any
model spread due to climate forcing data uncertainty
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is not represented by the GCP ensemble. Yet, several
studies have identified historical climate forcing as a
large source of uncertainty in terrestrial carbon cycle
modelling (Hicke 2005, Jung et al 2007, Poulter et al
2011, Bonan et al 2019, Lawrence et al 2019). Hicke
(2005), for example, highlights important biases in
net primary productivity (NPP) estimation while
using different radiation datasets, and (Poulter et al
2011) conclude that atmospheric forcing results in a
large uncertainty compared to land-cover datasets for
NPP, heterotrophic respiration (Rh) and net ecosys-
tem exchange. More recently, as part of the assess-
ment and benchmarking of the Community Land
Model version 5 (CLM5) (Lawrence et al 2019), cli-
mate forcing uncertainty was compared to model
structure uncertainty using two forcing data sets
(Global Soil Wetness Project 3 and CRUNCEP) and
three versions of CLM (CLM4, CLM4.5, and CLM5)
that differ markedly in their carbon cycle representa-
tion (Bonan et al 2019). The authors concluded that
climate forcing is a large source of uncertainty in
the global carbon cycle, especially for GPP, NPP and
Rh, and to a lesser extent for Net Biome Productiv-
ity. However, this study was performed with different
versions of a single model, and only two estimates of
atmospheric climate forcing. Arguably therefore, the
importance of atmospheric forcing on carbon cycle
estimation by TBMs remain insufficiently explored,
especially in the context of recent model structural
improvements in the 6th Coupled Model Intercom-
parison Project (CMIP6) generation of models.

In this study, we used the output from the TBMs
of three Earth System Models (ESMs) participating
in the CMIP6. We performed an analysis of vari-
ance similar to Hawkins and Sutton (2009), Loven-
duski and Bonan (2017), Bonan et al (2019)in order
to quantify the relative uncertainty from atmospheric
forcing, models and forcing-model interactions in
carbon flux estimates made by TBMs. We used a com-
bination of three TBMs from ESM and three atmo-
spheric forcing datasets in our analysis. We present
results for the major terrestrial carbon cycle fluxes;
gross primary productivity (GPP), autotrophic res-
piration (Ra) and heterotrophic respiration (Rh), at
global and regional scales. We also investigate estim-
ates of CO, emissions from natural fires (fFire) and
highlight their role in the calculation of the land car-
bon sink, before focusing on sources of uncertainty
in the global net ecosystem productivity (NEP =
GPP—Ra—Rh—fFire).

2. Methods

2.1. CMIP6 models and atmospheric forcings

We used the results of three TBMs of CMIP6
ESMs described in table 1, from the Land Sur-
face, Snow and Soil moisture Model Intercomparison
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Table 1. Model description.
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Terrestrial biosphere
model

Community Land model
CLMS5 (Lawrence et al 2019)

ISBA-CTRIP (Decharme
etal 2019, Delire et al 2020)

JSBACH3.2 (Reick et al 2021)

Parent climate model

Simulation
resolution
Fire

Community Earth system
model CESM2
(Danabasoglu et al 2020)
0.9° latitude by 1.25°
longitude

Process-based (Li et al 2012,

CNRM-ESM2-1 (Séférian
etal 2019)

T127 (~1.4°)

Simple, based on GlobFirm

MPI-ESM1.2-LR (Mauritsen
etal 2019)

T63 (~1.9°)

Mechanistic, SPITFIRE

Li and Lawrence 2017) (Thonicke et al 2001) (Lasslop et al 2014)
Natural vegetation No No Yes (Reick et al 2013)
dynamics
Nitrogen cycle Revised (Fisher et al 2019) No New (Goll et al 2017)
Plant hydrodynamics ~ (Kennedy et al 2019) No No
Soil carbon Yes Yes New (Goll et al 2015)
decompostion
Soil hydrology Multilayer Multilayer Multilayer (Hagemann and
Stacke 2015)
Other Numerous updates to Similar Similar
hydrology, snow, gas
exchange and crops
Table 2. Atmospheric forcing description.
Global soil wetness project
(GSWP3) version 1.09 (Kim Princeton (Sheffield
Name 2017) CRUJRA? (Harris 2019) etal 2006) v2.2

Time resolution
Covered period
Reanalysis used

Corrected by

air temperature

Precipitation

Radiation

Use

3 hourly

1901-2014

20th Century Reanalysis version
2 (Compo etal 2011)

Climate Research Unit
Timeseries (CRU TS) v3.21
Global Precipitation
Climatology Center (GPCC) v7

Surface Radiation Budget (SRB)
datasets (downwelling radiation
fluxes)

LS3MIP

6 hourly

1901-2018

Japanese Reanalysis (JRA) by
the Japanese Meteorological
Agency (JMA)®

CRU TS v4.03

CRU TS v4.03

CRU TS v4.03

GCP

3 hourly

1901-2012

National Centers for
Environmental Prediction
(NCEP) reanalysis

CRU TS v3.2

CRU, Global Precipitation
Climatology Project and
TRMM Multi-satellite
Precipitation Analysis
SRB

Hydrology

 Erroneously named CRUNCEP in CMIP6 simulations.
Y http://hydro.iis.u-tokyo.ac.jp/ GSWP3/.

Project (LS3MIP, Van den Hurk et al 2016) of
CMIP6. For the three models, land use transitions
are forced by the Land Use Harmonization 2 (LUH2)
time series (Hurtt et al 2020). Those three mod-
els have been selected because they are the only
ones that report output from three different atmo-
spheric forcings and also share data for emissions
from fire, on the Earth System Grid Federation
archive.

Three climate forcing datasets were used to force
the TBMs, according to the LS3MIP protocol. Atmo-
spheric forcing consists of hourly to 6 hourly data on
precipitation, short and long wave solar radiation,
near surface air temperature, specific humidity, and

wind speed. The three forcings described in table 2
have a 0.5° x 0.5° spatial resolution.

For reference, results of analysis of this set of
model simulations with the International Land Model
Benchmarking (ILAMB, Collier et al 2018) pack-
age are provided here: www.ilamb.org/land-hist/.
ILAMB produces systematic evaluation (plots, sum-
mary tables, scoring) of model output against obser-
vations for a range of metrics including bias, RMSE,
pattern correlation, annual cycle phase, and variable-
to-variable comparisons. The version of ILAMB
presented here assesses 22 land carbon, water, and
energy cycle variables model variables against more
than 50 observational datasets.


http://hydro.iis.u-tokyo.ac.jp/GSWP3/
https://www.ilamb.org/land-hist/
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2.2. Analysis of variance

To statistically disaggregate the impacts of climate for-
cing, model choice and their interactions on relev-
ant output variables, we performed an ANOVA. We
analysed nine terrestrial carbon cycle simulations—
three TBMs forced by three forcings—for the time
period 1960-2012, chosen to coincide with the begin-
ning of atmospheric carbon dioxide measurements
in the 1960s, and the end of the Princeton dataset.
We quantify relative uncertainty into three sources:
models, atmospheric forcing differences and model-
forcing interactions which measure the fact that mod-
els behave differently to different forcing product.
Details can be found in the supplementary material.

3. Results

3.1. Global scale

We first investigated and compared the forcing data in
order to highlight the main differences and similarit-
ies. The three forcings mostly agree on near surface
air temperature, but they present large differences
in specific humidity, incoming shortwave and long-
wave radiation, and windspeed (figure 1). Princeton
has much higher specific (and relative—not shown)
humidity than CRUJRA or GSWP3 in most parts of
the world, except in desert areas. Additionally, spe-
cific humidity is generally greater with GSWP3 than
with CRUJRA in tropical regions. CRUJRA also has
higher shortwave and lower longwave incoming radi-
ation than GSWP3 and Princeton, both having almost
identical values. The precipitation forcing differs also
with higher values for GSWP3, especially within the
Arctic circle related to snowfall uncertainties.

We performed the analysis of variance on the
global estimates of GPP, Ra, Rh, GPP-Ra-Rh, fFire
and NEP (figure 2). The results illustrate a dom-
inant role of the atmospheric forcing variation on
global GPP estimates (figure 2(a)), with large differ-
ences between the multi-model mean values accord-
ing to the forcings (about 15 PgC-yr '), with GSWP3
resulting in lowest GPPs for all three models, Prin-
ceton the highest GPPs, and CRUJRA in between.
The discrepancies between the models for a given for-
cing are smaller, especially for CRUJRA and Prin-
ceton. Global GPP estimates of the ISBA-CTRIP and
CLMS5 models are very similar when forced with the
CRUJRA forcing, and slightly differ when forced with
GSWP3 or Princeton. The global GPP estimates of
JSBACH are the largest with all three forcings and the
difference with the two other models is the biggest
with the GSWP3 forcing. However, the three models
obtain very similar results with the Princeton atmo-
spheric forcing. This suggests a general sensitivity of
the models to an atmospheric variable that is different
between Princeton’s and the two other forcings, such
as specific humidity (figure 1). These nine simulation

L Hardouin et al

results indicate a strong sensitivity of modelled GPP
to climate forcing.

Figure 2(b) confirms the dominant role of
atmospheric forcing on global GPP uncertainty. It
accounts for ~75% of the variability in the mean
estimates, against ~19% for models and ~6% for
interactions terms.

The dominance of atmospheric forcing contri-
bution over the uncertainty is even more obvious
for autotrophic respiration (figure 2(c)), again with
similar model mean values for a given forcing but
large differences between forcings with no overlap.
According to our analysis of variance, ~90% of the
uncertainty can be assigned to forcings, ~5% to mod-
els and ~5% to the interactions terms (figure 2(d)).
The Princeton forcing results in a slightly larger
spread between the average autotrophic respiration
than the other forcings.

Global NPP (GPP-Ra) behaves differently. Des-
pite differences in multi-model mean values per
atmospheric forcings (around 5PgC-yr~!) attesting
to the role of forcing in uncertainty, we can see
that JSBACH estimates are clearly higher than the
two others (more than 10 PgC-yr™!) in figure 2(e).
This indicates greater model contribution to uncer-
tainty, confirmed by figure 2(f) where models are the
dominant source (~63%) of uncertainty for NPP,
but atmospheric forcing remains important with
~30% of variability explained and ~7% for model-
forcing interactions. Contrary to ISBA-CTRIP and
CLMS5 that simulate the lowest NPP with GSWP3 and
the highest with Princeton (like for GPP and Ra),
JSBACH simulates a slightly smaller global NPP with
the CRUJRA forcing. Global Rh presents similar res-
ults to global NPP (not shown), both for atmospheric
contribution to uncertainty and for greater values
obtained with GSWP3 than CRUJRA for JSBACH.

We show that atmospheric forcings have an
important (NPP, Rh) and even dominant (GPP, Ra)
role in uncertainty distribution for the major fluxes
of global carbon cycle estimates. It seems that forcing
contribution to uncertainty decreases when we con-
sider net flux such as NPP and Rh rather than direct
products of photosynthesis (GPP and Ra).

Wildfires are a small contribution to the
global land carbon loss fluxes (~2-3PgC-yr™!)
(Van der Werf et al 2010), especially when compared
to plant and soil respiration. Nonetheless, fire carbon
losses correspond to approximately one-third of the
GPP-Ra—Rh net flux. Moreover, this flux has partic-
ularly high seasonal and inter-annual variability, in
response to both land cover change, as well as climatic
events like drought. Despite its importance, anthro-
pogenic biomass burning is not yet represented by
all TBMs. Overall, high uncertainty remains in the
carbon emissions associated with fire (figures 2(g)
and (h)). ISBA-CTRIP tends to overestimate global
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Figure 1. Annual mean of atmospheric variables used to drive terrestrial biosphere models: GSWP3 (gswp, left-most column),
Princeton minus GSWP3 (pgf-gswp; center left column), CRUJRA minus GSWP3 (crujra-gswp; center right column), and zonal

fire emissions compared to the global fire emission
database (2.14 PgC-yr~! for 19972015 van der Werf
et al, 2017), while JSBACH is slightly lower (espe-
cially with Princeton). Part of these differences may be
explained by the intermediate complexity fire module
GlobFirm (Thonicke et al 2001) used in ISBA-CTRIP
that is known to overestimate fire emissions (Li et al
2012). Figure 2(g) shows a large discrepancy between
model values for a given forcing, particularly for the
Princeton one, and figure 2(h) confirms a fractional
contribution to uncertainty of ~85% for the mod-
els, ~6% for forcings and ~9% for interactions. A
closer look at fire results shows indeed interesting
interactions between the forcings and fire modules
that explain the bigger dispersion for Princeton. We
saw that GPP and NPP (GPP-Ra) is enhanced with
the Princeton forcing, most probably because of the
high level of air humidity. For the GlobFirm module

implemented in ISBA-CTRIP, this leads simply to
lower evapotranspiration rates, less moisture stress,
higher productivity and litterfall (not shown) res-
ulting in more biomass burned and greater asso-
ciated carbon emissions. However, with the more
mechanistic fire module of CLM5, the higher air
humidity results directly in lower level of fuel flam-
mability (see equation (8) Li et al 2012). In JSBACH,
finally, the three applied forcings cause very different
fire-vegetation feedbacks, such that the natural veget-
ation cover in the three simulations differs strongly,
particularly in fire prone regions such as Africa
and Asia (not shown). Such strong fire-vegetation
feedbacks have already been observed for JSBACH
in previous idealised model simulations (Lasslop
et al 2016). Emissions from fire appear to be quite
sensitive to atmospheric forcing when we compare
individually the relative dispersion for each model,
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but this dependency is overshadowed in this analysis
by the even larger uncertainty related to the model
structure.

Here, we first present results for GPP-Ra—Rh
estimates. This flux takes into account the most
important and probably best represented processes
of the terrestrial biosphere carbon sink, by exclud-
ing fire emissions. As expected, this net flux is smal-
ler and has larger interannual variability (stand-
ard deviation) relative to the mean than the gross
fluxes GPP, Ra and Rh. Figure 2(i) suggests a more
important contribution to uncertainty by forcing
than models: model mean values are close to each
other for a given forcing and there is a small dif-
ference between forcings. The analysis of variance
results shows effectively a dominant role of forcings
(~52%) over models (~8%) but also a substan-
tial contribution of the interaction terms (~40%)
(figure 2(j)). Indeed, the models do not show sim-
ilar patterns with respect to the forcings. CLM5 res-
ults in greater values for CRUJRA (6.53 PgC-yr— ')
than Princeton (6.14 PgC-yr~'), while ISBA-CTRIP
simulates slightly bigger fluxes with Princeton (6.33
PgC-yr~!) than with CRUJRA (6.23 PgC-yr™!), as
does JSBACH with a greater difference (6.06 for
CRUJRA against 6.68 PgC-yr~! with Princeton). In
addition, we observe only slightly bigger results for
CRUJRA than GSWP3 for JSBACH, consistent with

the results obtained from Rh and NPP, while the
difference is more pronounced for ISBA-CTRIP and
CLMS5. This highlights differences in model sens-
itivity to atmospheric forcings, such as air humid-
ity or downward radiation flux, for the land sink
calculation.

Larger differences are obtained when we take into
account fFire in the NEP calculation (figures 2(k)
and (1)). There is only a small difference between the
multi-model mean values per forcing, and a larger
spread between the values of the different models,
especially with the Princeton forcing (figure 2(k)).
Moreover, global NEP is almost independent of the
forcing with CLM5 and ISBA-CTRIP, which is not the
case with JSBACH. The variance analysis results show
that models contribute ~75% to uncertainty, forcings
account for ~9% and interactions for ~16%. This
contrasts with the significant forcing contribution we
obtained when not accounting for fFire, and indic-
ates clearly a high model uncertainty related to fire
emission.

To complete the global picture we analyze the
contribution of atmospheric forcing to uncertainty
in carbon stocks (figure 3). Atmospheric forcing
plays a role in global carbon stock uncertainties but
not a dominant one like for gross carbon fluxes.
There are large differences in live (cVeg) and dead
biomass (cLitter), and soil organic carbon content
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(cSoil) between multi-model means per forcing
but the differences between models are even lar-
ger. The analysis of variance for cVeg shows that
~26% of the uncertainty can be assigned to forcings,
~67% to models and ~7% to the interactions terms
(figure 3(b)). For cLitter and cSoil, these numbers are
respectively ~20% and ~9% for forcing, ~68% and
~81% for models and ~13% and ~10% for interac-
tions (figures 3(d) and (f)). CLM5 and ISBA-CTRIP
both simulate the smallest live and dead stocks with

GSWP3 while JSBACH simulates the smallest stocks
with CRUJRA(figures 3(a), (c) and (e)). Princeton
results in the largest stocks with every model. Live
biomass from CLM5 and ISBA-CTRIP are fairly sim-
ilar while JSBACH’s is lower. The litter reservoir is
the highest with ISBA-CTRIP and the lowest with
CLMS5 while the soil carbon is the largest with CLM5
especially for CRUJRA and Princeton. The higher soil
carbon content with CLM5 can be explained by the
vertically discretized soil carbon module with deeper
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(equation (3) and tables S2-S4 in supplementary material).
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Figure 4. Regional carbon fluxes for 1960—2012. Total flux value for each SREX region in background, distribution of uncertainty
between forcings, models and interactions as overlayed pieplots with size of the pies proportional to the total uncertainty value

soils (down to a maximum of 8.5m). In the case of
ISBA-CTRIP and JSBACH the soil carbon reservoir
only represents the carbon in the first meter.

3.2. Regional scale

We performed the same analysis of variance on the
30 sub-continental regions defined in the Intergov-
ernmental Panel on Climate Change (IPCC) Special
Report on Managing the Risks of Extreme Events

and Disasters to Advance Climate Change Adapta-
tion (SREX; IPCC SREX 2012). Figure 4 presents
the results for GPP, Ra and Rh. The regions that
present the largest uncertainty (largest pies) for GPP
(figure 4(a) and supplementary tables S2-S4) are
North Asia (NAS), the Amazon forest (AMZ), and
to a lesser extent West Africa (WAF), South Asia
(SAS), South East Asia (SEA), East Africa (EAF),
South Africa (SAF), and West North America (WNA)
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even if WNA contributes only 2—4 PgC-yr~! to global
GPP. Atmospheric forcing is a dominant source of
uncertainty (more than half) in some regions that
have fairly large contributions to the global total GPP
flux, such as EAF and East Asia (EAS), but also in
Central North America (CNA), West Coast South
America (WSA), and North East Brazil (NEB). Atmo-
spheric forcing is an important source of uncertainty
(more than a third) in AMZ and WAF, tropical forest
regions, which contribute greatly to global GPP. Gen-
erally, it seems that atmospheric forcings play an
important role in tropical regions. Less important
contribution in SAS and SEA could be explained by
monsoon regimes that prevail on atmospheric forcing
differences, but also by model resolution that could
explain dominant model uncertainty in island regions
(SEA but also Caribbean and Pacific Island Regions).
Model-forcing interactions play a secondary but sig-
nificant role in some regions such as NAS, WAF and
South East South America (SSA) for the ones that
contribute the most to global GPP.

Slightly different results can be observed for Ra
(figure 4(b)). Atmospheric forcing contribution to
uncertainty is lower in NAS and AMZ, as well as SEA
and NEB. Generally, the forcing and interaction terms
seem to play a less important role in Ra than in GPP
regional estimates. For Rh (figure 4(c)), forcing con-
tribution is even more reduced in tropical regions,
where the fractional distribution never exceeds one-
third. However, atmospheric forcing plays an import-
ant role in heterotrophic respiration uncertainty in
the northern hemisphere’s mid and high latitudes
(about one-third). Interaction terms become also
important in numerous mid and northern regions,
particularly in NAS, CNA and Central Europe (CEU).
An interpretation could be that models do not predict
the same evolution for Rh in the areas where atmo-
spheric variables are changing faster.

It is interesting to probe why atmospheric forcing
accounts for more uncertainty at global than regional
scale. We found that some differences between the
forcings have the same impact on most of the world’s
area, while model differences induce strong regional
uncertainty but not in the same manner everywhere.
As an example, GPP estimates are slightly larger with
Princeton than with CRUJRA or GSWP3 in all regions
(see supplementary material figure S1), regardless of
the model and add up to a large difference at global
scale. This is consistent with the idea that the higher
humidity in the Princeton dataset allows for higher
photosynthetic rates for all models forced by it. Con-
versely, GPP estimates by ISBA-CTRIP and CLM5
appear to be similar at global scale, yet the regional
analysis highlights strong opposition between trop-
ical regions with higher GPP for ISBA-CTRIP com-
pared to CLM5, and the northern hemisphere which
has higher GPP in CLM5 compared to ISBA-CTRIP
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(see supplementary material figure S2). Thisleads to a
strong model contribution to uncertainty at regional
scale, but those differences compensate each other
globally.

4, Conclusion

The goal of this study was to evaluate the uncertainty
related to the use of different global atmospheric for-
cing datasets in terrestrial carbon cycle modelling. We
used nine CMIP6 simulations from three TBMs run
with three different forcings to perform our analysis.
First, we focused on global averages and found that
atmospheric forcings are a dominant source of uncer-
tainty compared to model choice for GPP and Ra,
and contribute significantly to the overall uncertainty
for Rh and NPP. The contribution of atmospheric
forcing to the net fluxes uncertainty is reduced since
positive effects of atmospheric forcings on photosyn-
thesis are partially offset by enhancement in the res-
piration fluxes. We still found an important role of
atmospheric forcing on GPP-Ra-Rh temporal mean
estimates, but with important interaction terms that
translate different model responses to climate vari-
ables. Important differences in fire modelling lead to a
dominant role of models in NEP uncertainty, even on
a global scale, despite a visible relationship and inter-
actions between fire emission and climate forcings.

Secondly, we looked at the partitioning of uncer-
tainty at the regional scale, with the purpose of identi-
fying the regions where atmospheric forcings contrib-
ute the most to the variability of GPP, Ra and Rh.
We showed that generally, the model structure is the
dominant source of uncertainty regionally, in con-
trast to what we found globally. Atmospheric forcing
contribution remains significant and even slightly
dominant in some regions, notably in tropical forests
for GPP and Ra and in mid and northern high lat-
itudes for Rh, but regional discrepancies among the
models are stronger. However, and in contrast with
the forcings, it is not the same models that result in the
biggest and lowest values everywhere. Those differ-
ences add up and offset each other, leading to closer
results globally.

While the purpose of the study was to investig-
ate the contribution of forcing uncertainty and to
demonstrate the influence of choosing a specific for-
cing over another forcing, this experimental design,
using three distinct sets of forcing data fields is not
ideal for identifying the relative sensitivity to which
drivers are most critical. While the large difference in
humidity between Princeton and the other two data-
sets points to that field being particularly import-
ant in governing GPP and other fluxes, a more spe-
cific one-at-a-time propagation of the uncertainty in
each field may allow for a more specific attribution of
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uncertainty to meteorologic variables. Likewise, per-
turbations to the distributions while holding mean
values constant may allow attribution of carbon cycle
sensitivity to extremes. Nonetheless, these results
point to a focus on constraining humidity values as
key to reducing forcing uncertainty. To the extent that
humidity is a key driver in GPP uncertainty, another
question is whether this uncertainty is exacerbated
in offline simulations such as used here, GCP, and
elsewhere, because of the inability for surface mois-
ture fluxes to attenuate humidity biases in the forcing
fields due to the one-way coupling.

Additional work involving more TBMs and cli-
mate forcings should be done in order to better
quantify the role of forcings in carbon cycle uncer-
tainty, especially for the interactions between fire,
land-cover dynamics and climate forcings. Even so,
we conclude that atmospheric forcings are a key
source of uncertainty in carbon cycle modelling at
the global scale and are a significant source of uncer-
tainty in some regions. Therefore, we suggest that
where possible, it would be preferable for future MIPs
and assessments (e.g. TRENDY, GCP, CMIP) to run
simulations with several alternative climate forcing
datasets, and to more specifically generate datasets to
allow attribution of carbon cycle sensitivity both to
uncertainty in meteorologic fields and to uncertainty
in mean versus extreme values of meteorologic fields,
when estimating the terrestrial carbon sink in order
to correctly represent the uncertainty associated.
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