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ABSTRACT: Changes in Earth’s climate in response to atmospheric green-
house gas buildup impact the health of terrestrial ecosystems and the hydro-
logic cycle. The environmental conditions influential to plant and animal life
are often mapped as ecoregions, which are land areas having similar combi-
nations of environmental characteristics. This idea is extended to establish
regions of similarity with respect to climatic characteristics that evolve through
time using a quantitative statistical clustering technique called Multivariate
Spatio-Temporal Clustering (MSTC). MSTC was applied to the monthly time
series output from a fully coupled general circulation model (GCM) called the
Parallel Climate Model (PCM). Results from an ensemble of five 99-yr Busi-
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ness-As-Usual (BAU) transient simulations from 2000 to 2098 were analyzed.
MSTC establishes an exhaustive set of recurring climate regimes that form a
“skeleton” through the “observations” (model output) throughout the occupied
portion of the climate phase space formed by the characteristics being consid-
ered. MSTC facilitates direct comparison of ensemble members and ensemble
and temporal averages since the derived climate regimes provide a basis for
comparison. Moreover, by mapping all land cells to discrete climate states, the
dynamic behavior of any part of the system can be studied by its time-varying
sequence of climate state occupancy. MSTC is a powerful tool for model
developers and environmental decision makers who wish to understand long,
complex time series predictions of models. Strong predicted interannual trends
were revealed in this analysis, including an increase in global desertification; a
decrease in the cold, dry high-latitude conditions typical of North American
and Asian winters; and significant warming in Antarctica and western Green-
land.

KEYWORDS: Climate, Clustering, Parallel Climate Model, PCM, Multi-
variate Spatio-Temporal Clustering

1. Introduction
Understanding the physical environment that affects the life cycles of all plants
and animals (including humans) is of paramount importance as natural and an-
thropogenic environmental changes occur. The environment is characterized by a
large number of conditions, including land surface properties (soil type, elevation,
rivers and lakes, vegetation, etc.), ocean properties (sea surface temperatures,
salinity, circulation patterns, etc.), and atmospheric properties (chemical species
concentrations, air temperatures, atmospheric structure, etc.). Humans have long
attempted to understand and model the interactions of these properties. The envi-
ronmental conditions influential to plant and animal life are often mapped as
ecoregions, which are groupings of land areas having similar combinations of
environmental characteristics. Köppen and Geiger (Köppen and Geiger 1928; see
also Köppen and Geiger 1930; Thornthwaite 1931; Thornthwaite 1948) long ago
used a hierarchical classification scheme to map vegetation zones based only on
temperature and precipitation patterns. More recent regionalizations have become
more specialized and provide a framework for ecological research (Bailey 1983;
Omernik 1987; Omernik 1995; McMahon et al. 2001). A multivariate clustering
technique, developed by Hargrove and Hoffman, has been applied to ecological
regionalization using many environmental characteristics for the conterminous
United States at a resolution of 1 km2 (Hargrove and Hoffman 2004; Hargrove and
Hoffman 1999). This technique is one of the most objective and quantitative in use
today.

Here we extend our Multivariate Geographic Clustering (MGC) technique to
regionalize changing environmental conditions predicted by a fully coupled gen-
eral circulation model (GCM) called the Parallel Climate Model (PCM). We call
this new technique for analyzing time series data Multivariate Spatio-Temporal
Clustering (MSTC). The resulting regions, which change as simulation time pro-
gresses, are called climate regimes or climate states. Three important environmen-
tal characteristics, taken from model output, are used in this analysis: temperature,
precipitation, and soil moisture. While choosing only three variables will simplify
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graphical presentation of the results, any number of characteristics could be ana-
lyzed simultaneously. Nevertheless, temperature, precipitation, and soil moisture
are the three most important climatic parameters affecting terrestrial ecosystems,
the hydrological cycle, and human life. Impacts due to predicted changes in these
parameters are of utmost concern to environmental-policy decision makers.

1.1 Multivariate Spatio-Temporal Clustering

A multivariate statistical clustering technique based on an iterative k-means algo-
rithm (Hartigan 1975) has been used to extract patterns of climatological signifi-
cance from the output of five 99-yr Business-As-Usual (BAU) integrations of a
fully coupled GCM. Originally developed and implemented on a Beowulf-style
parallel computer constructed by Hoffman and Hargrove from surplus commodity
desktop PCs (Hargrove et al. 2001), the high-performance parallel clustering al-
gorithm (Hoffman and Hargrove 1999) was previously applied to the derivation of
ecoregions from map stacks of 9 and 25 geophysical conditions or variables for the
conterminous United States. The resulting regionalizations have recently been
used to quantify the representativeness of the AmeriFlux sampling network (Har-
grove et al. 2003). Now applied both across space and through time, the MSTC
technique yields temporally varying climate regimes that can be used to diagnose
model behavior and inherent variability and to understand and interpret model
predictions. Figure 1 describes this MSTC procedure.

The left side of Figure 1 represents geographic space, while the right side
illustrates the same map cells or “observations” from every snapshot in time in a
multidimensional data space. The N characteristics of each map cell on the left are
used as the N coordinates for that observation in data space on the right. In Figure
1, N is three: temperature, precipitation, and soil moisture. The values of the N
input variables for the collection of map cells are standardized such that each
variable has a mean of zero and a standard deviation of one. These values are then
used to uniquely locate each map cell in the N-dimensional data space. Any two
cells from anywhere in the maps possessing similar combinations of conditions
will, by definition, be located near each other in data space. Their proximity and
relative positions will quantitatively reflect their similarity.

Having no information about the geographic coordinates of each observation,
the iterative clustering algorithm finds k groups or clusters of observations based
on their proximity, by simple Euclidean distance, in data space. The number of
clusters, k, is chosen by the user. First, a set of k initial centroid locations in data
space is determined from the entire collection of input maps using a fast parallel
algorithm called the “best of the best.” These initial centroids (or seeds) are chosen
to be the k most widely distributed observations in data space. On a parallel
computer this is accomplished by dividing up the total number of observations
among a number of computer nodes, n. Each node finds the k best seeds from its
portion of the observations and sends these seeds to a single node that subse-
quently determines the best k seeds from the n × k set of candidate seeds, that is,
the best of the best.

In the iterative part of the algorithm, each observation is assigned to the cluster
whose centroid is nearest to it in data space. After all observations are assigned to
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a cluster, new centroid positions are computed using the mean values for each
coordinate of all observations assigned to that cluster. As a result, the centroids
migrate to the most densely populated regions of data space. This procedure is
repeated until the number of observations that change cluster assignments in a
single iteration is less than some threshold. Once the threshold is met, final cluster
assignments are saved. Reassembling the map cells in geographic space for each
point in time and coloring them randomly according to their cluster assignment
yields new maps showing regions having approximately equal multivariance with
respect to the N characteristics used in the clustering process. Since the clustering
algorithm is implemented for distributed memory parallel supercomputers, it may
be used to analyze very large datasets (Hoffman and Hargrove 1999).

1.2 The Parallel Climate Model (PCM)

Output from a fully coupled GCM, called PCM, was used for these analyses. PCM
makes use of the third version of the National Center for Atmospheric Research
(NCAR) Community Climate Model (CCM3; Kiehl et al. 1998; Hurrell et al.
1998; Briegleb and Bromwich 1998), the NCAR Land Surface Model (LSM;
Bonan 1996; Bonan 1998), the U.S. Department of Energy (DOE) Los Alamos

Figure 1. The Multivariate Spatio-Temporal Clustering procedure.

Earth Interactions • Volume 9 (2005) • Paper No. 10 • Page 4



National Laboratory Parallel Ocean Program (POP; Dukowicz and Smith 1994;
Maltrud et al. 1998; Smith et al. 1995), the Naval Postgraduate School sea ice
model, a River Transport Model (RTM; Branstetter 2001), and a distributed flux
coupler (Bryan et al. 1996). The CCM3 is a spectral dynamics model that uses a
T42 resolution (approximately 2.8° × 2.8°) with 18 hybrid levels in the vertical.
The LSM simulates the biogeophysics of prescribed vegetation types and hydrau-
lic and thermal properties of 12 soil types. The RTM routes water runoff from land
into the oceans. The POP uses a grid with a displaced North Pole at an average
resolution of 2/3° latitude–longitude with increased latitudinal resolution of ap-
proximately 1/2° near the equator. The sea ice component predicts the evolution of
ice thickness, ice concentration, velocity, snow thickness, and surface temperature
(Zhang and Hibler 1997); and it uses an elastic–viscous–plastic (EVP) ice rheol-
ogy dynamics (Hunke and Dukowicz 1997). The distributed flux coupler, origi-
nally developed for the NCAR Climate System Model (CSM), connects the PCM
components and facilitates the exchange of flux and state variables among the
component models. The fully coupled modeling system is described in Washing-
ton et al. (Washington et al. 2000).

Versions of PCM, and a follow-on model called the Parallel Climate Transi-
tional Model (PCTM), have been used for a wide variety of control and transient
simulations. For example, the DOE Accelerated Climate Prediction Initiative
(ACPI) commissioned an ensemble of runs for the twentieth century using oceans
initialized to 1995 observed conditions. This forcing employed an anomaly cou-
pling scheme and was created by a group from the Scripps Institution of Ocean-
ography and other institutions (Pierce et al. 2004). Barnett et al. (Barnett 2001)
have shown that the model-produced signals are indistinguishable from observa-
tions at the 0.05 confidence level, and they suggest that the model uniquely
captures the effects of anthropogenic forcing by replicating both air temperature
increases and associated ocean heat uptake (Barnett et al. 2001). When the same
runs were performed without the oceanic forcing, a comparison of the results by
Dai et al. (Dai et al. 2004) showed only a ±0.1°C difference in global surface
temperature between the two sets of runs. They conclude that “the effect of small
errors in the oceans (such as those associated with climate drifts) on coupled
GCM-simulated climate changes for the next 50–100 years may be negligible”
(Dai et al. 2004).

Among the large number of simulations performed using version 1.1 of PCM is
an ensemble of 99-yr BAU scenario runs beginning in the year 2000. Run on the
IBM RS/6000 SP parallel computers at the Oak Ridge National Laboratory’s
Center for Computational Sciences (CCS), these simulations project continued
atmospheric increases in CO2 and other trace gases comparable to the mean of all
the scenarios developed subsequently for the Intergovernmental Panel on Climate
Change’s (IPCC’s) Special Report on Emissions Scenarios (SRES; Nakićenović
and Swart 2000). The CO2 levels increase from ∼371 ppm in 2000 to 710 ppm in
2100. These five BAU runs show a global mean surface temperature increase of
∼1.9°C over the twenty-first century and a ∼3% increase in global precipitation.
The model produces a cooling over the North Atlantic Ocean (1°–2°C mostly in
winter) resulting from a 20% slowdown in the thermohaline circulation (Dai et al.
2001). Presented here are results from all five of these BAU runs analyzed using
MSTC.
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2. Methodology

MSTC was applied to the analysis of monthly output from the ensemble of five
transient BAU scenario runs of PCM for the years 2000–2098. Three fields of
ecological significance were included in the analysis: temperature (K), precipita-
tion (kg m−2 s−1), and soil moisture (volume fraction of root zone soil water). Only
values over land were analyzed (2796 out of 8192 total model grid cells); ocean
and sea ice regions were not included.

The clustering process establishes an exhaustive set of clusters (called climate
regimes) occupied by one or more land cell observations. The centroids of the
resulting regimes in the three-dimensional climate data space (or phase space)
represent and define the synoptic conditions of their land cell membership. The
centroids represent a partitioning of the variance in the data and form a “skeleton”
for the observations in the occupied portion of phase space. The number of clusters
requested in the clustering process determines the number of climate regimes that
will result. Therefore, it implicitly defines the multivariance encapsulated within a
regime or the radius of the resulting clusters.

Each land cell must occupy one and only one regime at any single point in time.
The transitions among these regimes (or states in phase space) for any land cell
trace out an orbit or climate trajectory among successively occupied regimes.
When a land cell enters a climate regime it has never previously visited, a climate
change is said to have occurred. When the entire trajectory is traced out (along a
time axis added to the phase space), it forms a manifold representing the complete
climate regime or state occupancy for that location or land cell over the entire time
period. Rare climate extremes appear as excursions from the body of the manifold
while strong trends appear as changes or shifts in manifold shape.

Phase space state occupancy for a single land cell changes as a result of seasonal
and interannual cycles, including potential changes in climate. By taking 5-yr
running averages of cluster frequency (or land area under each regime or state)
over the entire globe, seasonal cycles can be removed from interannual trends. The
resulting curves show growth in some climate regimes, representing an increase in
spatial area, and compensatory loss in spatial area under other regimes. The num-
ber of land cells is fixed throughout the simulations; whenever one regime loses a
land cell member, it must be gained by another regime.

Since clusters have nearly equal radii, cluster centroids are regularly distributed
throughout the occupied portion of phase space. Therefore, the number of clusters
(or climate regimes) requested in the MSTC process defines the “resolution” at
which the multivariance of the data (model output) is “sampled.” The magnifica-
tion of a microscope can serve as an analogy to this resolution. When the mag-
nification is low, only the largest features of an object are visible. When the
magnification is increased, much more of the detail of an object becomes visible.
When a complex object is viewed at a single magnification, that magnification
must be sufficiently high to expose the finest level of detail desired, even if that
detail of interest is isolated in a particular region of the object. The rest of the
object may be homogeneous and not warrant such a high magnification.

Similarly, choosing too few climate regimes will result in very large, broad
regimes and will likely cause the researcher to miss predicted climate signals.
Choosing too many regimes will cause very small changes, attributable to noise,
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to be amplified in the analysis. Desired is an adequate sampling of the data
multivariance that produces cohesive regions containing cells that experience only
a handful of climate regimes annually. A suitable number of regimes is usually
chosen—just like the magnification of a microscope—by trying a few different
orders of magnitude. The exact number is not particularly important. For a pre-
liminary analysis using temperature, precipitation, and cloud cover, eight regimes
were requested; however, this was too few for an adequate sampling of the pre-
dicted multivariance. Subsequent analyses used 32 regimes since this number has
proven to be adequate for producing cohesive regions, elucidating climate vari-
ability, and detecting predicted climate change with model results at this model
resolution.

Initially, the results from each of the five BAU runs were clustered indepen-
dently into 32 regimes each. The regimes produced from clustering each run
independently were similar but were numbered differently. Moreover, because of
model variability, the resulting climate regime definitions were not directly com-
parable. A single common set of climate regimes was needed to serve as a basis
for comparison across runs. Such a set of climate regimes was generated by
clustering the entire ensemble of runs simultaneously. The climate regimes that
resulted represent the synoptic conditions for all five BAU runs taken together.
These common climate regimes may be used to intercompare predictions among
any of these runs. Finally, the ensemble average was computed for each month and
clustered. However, instead of allowing the climate regimes or states to be deter-
mined from a partitioning of the ensemble average itself, the common climate
regimes defined for the entire ensemble were used as centroids for a single-pass
clustering or classification of the ensemble average time series. As a result, the
ensemble average regime changes can be directly compared to those of the indi-
vidual runs since they share a common set of basis states. MSTC serves as a
transform between geographic space and phase space through simulation time, and
climate regimes derived in one phase space may be transplanted into another to
facilitate data comparison.

3. Results

When MSTC is applied to the ensemble model results, each land cell is assigned
to a climate regime for each time period (month). The multivariate results from
each run can then be displayed as global maps animated through time, as shown
in Movie 1 for the run designated B05.12. The static images shown here consist
of two frames: January (left panel) and July (right panel) of 2005. The top row
contains maps using random colors and the bottom row contains the same maps
using similarity colors. As shown in the legend, the similarity colors consist of a
linear combination of the three input variables: temperature (red), precipitation
(green), and soil moisture (blue). For example, Antarctica and Greenland are
shades of blue since they are dominated by high soil moisture; the Tropics tend to
be yellow (red and green) due to high temperatures and precipitation; and the
subtropics are shades of red because of warm temperatures and more modest
precipitation. Next to each map is a histogram of climate regime occupancy
showing the number of land cells contained in each cluster. As time progresses in
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the animations, the map patterns and histograms change reflecting seasonal and
interannual changes predicted by the model.

3.1 Climate regime evolution
Table 1 contains the quantitative definitions of the 32 common climate regimes
established by applying MSTC to the entire ensemble of runs simultaneously. The
regimes are characterized by the centroid locations of clusters in climate phase
space. The table is sorted by temperature, precipitation, and then soil moisture so
the coolest regimes appear at the top while the hottest appear at the bottom. The
first column, containing the cluster number used by the algorithm, is colored
randomly while the remaining columns show similarity colors using the same
variable to color assignments as in Movie 1. Climate regimes that experience a net
global increase in surface area in one or more BAU runs are denoted by a plus (+)
in the first column; those with a minus (−) shrink in net surface area globally.
Table 1 serves as a quantitative legend to all figures, which are based on the 32
common climate regimes.

Movie 1. Randomly colored (above) and similarity colored (below) animations of
the B05.12 run in terms of the common climate phase space resulted from
applying the MSTC technique. Shown here are two frames: (left) Jan and
(right) Jul of 2005. The similarity colors consist of a linear combination of
temperature (red), precipitation (green), and soil moisture (blue). For ex-
ample, Antarctica and Greenland are shades of blue since they are
dominated by high soil moisture, and the Tropics tend to be yellow (red
and green) due to high temperatures and precipitation, while the sub-
tropics are shades of red because of warm temperatures and more mod-
est precipitation.

See the online version of this paper to view animation.
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An analysis of the 5-yr running average of cluster frequency (or climate regime
or state occupancy) reveals consistent trends across all five runs when divided into
32 regimes. Figure 2 shows global climate regime evolution curves of high vari-
ance for all five BAU runs and for the ensemble average. High-variance curves
identify climate regimes that undergo significant changes in spatial area defined as

Table 1. Each of the 32 climate regimes is quantitatively defined by the properties
of its cluster centroid in climate phase space. Names can be ascribed to recog-
nizable regimes. Random colors and cluster numbers are contained in the first
column. The colors in the remaining columns are similarity colors computed from
the linear combination of temperature (red), precipitation (green), and soil mois-
ture (blue). The table is sorted by temperature, precipitation, and then soil moisture
so the coolest regimes appear at the top while the hottest regimes appear at the
bottom. This table serves as a legend to all figures based on the 32 common
climate regimes.
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those for which the 5-yr running average of state occupancy changes by 100 or
more grid cells over the course of the simulation. Curves with low variance,
representing regimes that did not experience significant global land area changes
(i.e., less than 100 grid cells), are not included in these graphs. All curves are
shown in random colors corresponding to the cluster definitions in Table 1. The
evolution curves for the ensemble average were generated by taking 5-yr running
averages of the ensemble average time series; they do not represent an average of
the evolution curves of the ensemble members.

The curves in Figure 2 reveal an increase in spatial area occupied by the climate
regime that typifies summertime desert regions (cluster 9, i.e., an increase in global
desertification) and a decrease in the spatial area occupied by the climate regime
typifying wintertime high-latitude permafrost regions (cluster 26). Additionally,
significant changes are seen to occur in both Antarctica and Greenland due pri-
marily to increasing temperatures over the 99-yr time period. This is indicated by
a significant decrease in occupancy of the three coldest and driest regimes (clusters
6, 28, and 32) and compensatory increases in Antarctic and Greenland summer and
spring/fall regimes (clusters 11 and 7). While desertlike conditions increase glo-
bally, the desert winter regime (cluster 1) actually decreases in coverage indicating
increasingly warmer and drier winters.

For more regional analyses, similar regime evolution curves can be computed on
a continental basis. Figures 3, 4, and 5 contain evolution curves of high-variance
regimes for North America, Antarctica, and Eurasia, respectively. The variance
threshold for these continental evolution curves to be included in the figure is 1%
of the total continental area. As with Figure 2, curves for each BAU run as well
as for the ensemble average are presented. While trends can be seen in other
regimes in individual runs for North America, the ensemble average has only a
significant decrease in spatial area of cluster 26: the coldest and driest Canadian
winter conditions. In Antarctica, the coldest and driest conditions in the middle of
the continent give way to climate regimes that typify current coastal conditions. As
with North America, the spatial area of cluster 26 decreases in Eurasia. For Eurasia
this regime represents the coldest and driest Siberian winter conditions. Interest-
ingly, the ensemble average sees a measurable increase in the spatial area of a
semiarid summer regime not observed in any single ensemble member. This
results from the increasing trend of cluster 9, the hottest and driest desert summer
regime, seen in three of the five ensemble members. Averaging the continuous
variables each month effectively shifts this signal in three of the five runs from the
most extreme desert regime to a semiarid regime in the ensemble average. It may
be more accurate to say that three out of five model runs predict a significant
increase in the hottest and driest desert summer regime than to say that the model
runs predict a growth in a semiarid summer regime. MSTC provides an easy
method for detecting both trends.

Once a subset of “changing” climate regimes is determined, a new animation
containing only those regimes shows when and where each significantly changing
regime occurs throughout the entire simulation. Movie 2 is an example of such an
animation containing two frames (January and July of 2005) from the ensemble
average time series with only the high-variance regimes plotted. These regimes are
the same as the ones plotted in the ensemble average global climate regime
evolution graph in Figure 2.
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3.2 Climate state space representation

Plotting the climate regimes (i.e., the cluster centroids) in the three-dimensional
climate phase or state space representation allows one to observe the portion of
that space that is occupied by the land surface at all points in geographic space and
time. Movie 3 shows the 32 common climate regimes derived from MSTC plotted
using similarity colors in the temperature, precipitation, and soil moisture phase
space. These climate states are common to all of the input observations (i.e., model
predictions) and as such serve as a basis for comparison among these predictions.
When all the input observations are plotted in the same state space, as shown in
Movie 4, it is easily observed that the derived states (Movie 3) form an equal-
multivariate skeleton throughout the portion of phase space occupied by observa-
tions.

Movie 3. Shown here are the common climate regimes statistically defined in terms
of three variables from 99 yr of monthly global output of all five BAU runs
combined. These 32 regimes or climate states (shown in similarity colors)
represent the subset of the climate state space occupied by PCM pre-
dictions and serve as basis states for intercomparison of these predictions.

See the online version of this paper to view animation.

Movie 2. Once the subset of high-variance climate regimes is determined, a new
animation of only these regimes may be used to easily see when and
where each occurs. Contained here are two frames, Jan and Jul of 2005,
from the ensemble average time series showing the high-variance re-
gimes from Figure 2.

See the online version of this paper to view animation.
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The planes formed by cells separated from the main body of observations in
Movie 4 represent regions modeled with completely saturated soil moisture, in-
cluding Antarctica and Greenland. In Movie 3, a line of blue regimes accounts for
these cells. The main body of observations in Movie 4 is flat on the front because
precipitation cannot go negative. The most densely populated region of phase
space is near the front representing low to mid soil moisture, low precipitation, and
warm temperatures. As is evidenced by the line of yellow–green regimes in Movie
3, high precipitation occurs only at moderately warm temperatures. The shape
formed by these regimes in this climate phase space makes intuitive sense and
demonstrates the covariance of the variables under analysis.

Since every individual land cell on the globe must exist in one and only one of
these climate states at any single point in time, the transitions among climate states
can be analyzed to learn something about the dynamics of the climate in that
geographic location. When the transitions among climate states for a single loca-
tion on the globe are drawn in state space, they form a climate trajectory like that
shown in Movie 5. In this figure, the current position of a land cell in state space
is represented by a “spider” resting on one of the climate states. The land cell of
interest is a point in the Middle East. As time progresses, the spider spins a “web”
among these states. Since repeated traversal of transition paths causes web seg-
ments to thicken, favored transitions become more prominent while rate transitions
appear as very thin line segments. In each frame, colored line segments represent
the current transition, and the color of that segment is borrowed from the state to
which the spider just traversed.

Because all five BAU runs are clustered together to define common climate
states, climate trajectories for all the simulations can be plotted simultaneously in
the same state space. For example, the animation in Movie 6 shows the same
Middle Eastern point from each of the five BAU runs represented as five spiders
simultaneously creating their own trajectories in the same common climate state
space as time progresses. The runs start at different times so not all spiders are
shown initially. Spiders and thickening web segments are colored by run number.

Movie 4. All land cell points from all five 99-yr BAU runs (16.6 million points) are
plotted together as small cubes in the three-dimensional climate phase
space formed by temperature, precipitation, and soil moisture. Cells from
each run are colored differently. Notice that the cluster centroids in Movie
3 form a “skeleton” through the “observations” in phase space shown
here.

See the online version of this paper to view animation.
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When a transition occurs, the segment color matches that of the spider traversing
the segment. When not being actively traversed, black segments represent transi-
tions made by most or all of the runs while colored segments represent transitions
favored by only one of the simulations.

This sort of visualization makes it easy to see when (in time) and where (in state
space) model predictions agree or disagree for a single location on the globe. When
the simulations agree, the spiders converge; when they disagree, the spiders di-

Movie 5. When the transitions among climate states for a single location on the
globe are drawn in state space, they form a “climate trajectory” char-
acteristic of that location. The position of the cell in state space is repre-
sented by a “spider” that spins a “web” among states as time progresses.
Shown here is the climate trajectory for Jun–Sep 2091 from the B06.09 BAU
run demonstrating that a cell in the Middle East enters a climate state (the
hottest and driest desert summer regime) that it had never previously
visited in the simulation.

See the online version of this paper to view animation.

Movie 6. This animation shows the Middle Eastern point from each of the five BAU
runs represented as five spiders creating trajectories in the common cli-
mate state space as time progresses. The runs start at different times so
not all spiders are shown initially. Spiders and thickening web segments
are colored by run number. When a transition occurs, the segment color
matches that of the spider traversing the segment. When not being ac-
tively traversed, black segments represent transitions made by most or all
of the runs while colored segments represent transitions favored by only
one of the simulations.

See the online version of this paper to view animation.
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verge. As one would expect, climate variability among runs results in frequent
state space divergence; however, the frequently made transitions between states
emerge as simulation time progresses. For the Middle Eastern point, the simula-
tions tend to agree most often during summer and winter months, but they may
take very different paths among other states during spring and fall months.

When the entire climate trajectory for a single spot on the globe is traced out in
a new phase space that includes a time axis, it forms a coil or a climate manifold
in that space representing the shape of its predicted climate state occupancy.
Rarely visited climate extremes appear as excursions from the body of the mani-
fold while strong trends appear as changes in manifold shape. Climate manifolds
for the Middle Eastern point for all five BAU runs and for the ensemble average
are shown in Movie 7. Since only three dimensions can be shown at one time, the
soil moisture axis has been replaced with a time axis. In all the runs and the
ensemble average, the bodies of the manifolds are approximately the same.

Rarely and with decreasing frequency as time progresses, this Middle Eastern
point visits a cold winter state that appears as a “comb” below the body of the
manifold. Late in the integrations of two of the ensemble members (B06.06 and
B06.09), the Middle Eastern point enters the hottest and driest desert summer
regime, a state it had never previously occupied. As a result, a climate change is
said to have occurred. Notice that although every simulation predicts continued but
rare occupancy of the cold winter state, the land cell in the ensemble average stops
visiting that state all together. Moreover, in the ensemble average, the predicted
climate change is not observed and much of the variability in precipitation at warm
temperatures from all of the runs is lost. This highlights the danger of analyzing
only ensemble averages. While ensemble averages are good for finding the strong-
est interannual trends, they are not good for diagnosing model behavior or under-
standing climate variability since averaging at each time point removes all vari-
ability and forces apparent model behavior to the trend.

3.3 Temporal average snapshots

To detect and map long-term trends using MSTC, representative decadal climate
regimes were determined for each BAU run by taking 10-yr averages of tempera-
ture, precipitation, and soil moisture early in the present (2001–10) and the future
(2089–98). To further distinguish seasonal changes, separate averages were com-
puted for Northern Hemisphere winter [December–January–February (DJF)] and
Northern Hemisphere summer [June–July–August (JJA)]. To accomplish this,
each of the three fields was averaged for each of the four seasonal 10-yr periods
of time for each of the five BAU runs. Then these 20 global realizations were
subjected to a single-pass clustering or classification using the common climate
regimes as basis states. The resulting maps and histograms are shown using simi-
larity colors in Figures 6 and 7.

By looking at the histograms, one can observe global area changes between the
present and future predictions that match the regime evolution curves in Figure 2.
By looking at the maps, one can determine not only where those area changes
occur but also how regimes may be redistributed among or within continents. For
instance, the histograms in Figure 6 show a consistent decrease in the desert
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winter regime (cluster 1) and an increase in the desert summer regime (cluster 9).
The maps demonstrate that these changes in area occur primarily in the Sahara
Desert and the Middle East. The significant decrease in spatial area of the Siberian/
Canadian winter regime (cluster 26) is readily observed in those areas of the maps.
The Antarctic and Greenland fall/spring #2 (cluster 7) and summer (cluster 11)
regimes gain area with a compensatory loss of area by the cooler and drier fall/
spring #1 regime (cluster 32). In addition, the maps and histograms show an
increase in arid winter conditions in central Asia (cluster 21) and the center of
North America (cluster 20).

Similarly, in Figure 7, the desert winter regime (cluster 1) shrinks in the South-
ern Hemisphere. The coldest and driest Antarctic winter regime (cluster 6) shrinks
while the Antarctic and Greenland fall/spring #1 regime (cluster 32) grows. This
growth is seen during the Southern Hemisphere winter despite the overall decline
in the trend for this regime reflected strongly in Figure 6. The spatial area of the
arid winter regime (cluster 20), which grew during the Northern Hemisphere
winter in central North America, shrinks during the Northern Hemisphere summer.
It represents the Arctic continental coastlines, the Andes in South America, and a
region of southern Australia during the Northern Hemisphere summer. In addition,

Figure 6. Calculating 10-yr averages for DJF in the (left) present and (right) future
and clustering with respect to the common climate states produces snap-
shots of land area change. Maps and histograms using similarity colors
are shown for all five BAU runs.
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a warm desert margin regime marked by particularly low precipitation (cluster 16)
grows in Figure 7. During the Northern Hemisphere summer, the regime begins to
encroach upon central Asia and the United States, particularly the south, resulting
in significantly drier summers for the southern states.

Similar seasonal area change maps for 10-yr averages of the ensemble average
were generated. The ensemble average time series was temporally averaged for the
present (2001–2010) and future (2089–2098) predictions for the Northern Hemi-
sphere winter months (DJF) and the Northern Hemisphere summer months (JJA).
These four snapshots were then clustered by a single pass through MSTC using the
32 common climate regimes resulting in seasonal land area classifications. Figures
8 and 9 show the results for DJF and JJA, respectively, using random colors (first
row) and similarity colors (second row). In addition, stoplight-colored difference
maps are presented for both seasons with respect to the present (left panel) and
future (right panel) predictions. In the difference maps, green regimes grow in area
from the present to the future, red regimes shrink in area from the present to the
future, and yellow regimes remain nearly constant in global area. While the ran-
dom-colored maps are better than the similarity-colored maps for finding specific
regimes and their borders, the stoplight-colored maps make it very easy to

Figure 7. Calculating 10-yr averages for JJA in the (left) present and (right) future
and clustering with respect to the common climate states produces snap-
shots of land area change. Maps and histograms using similarity colors
are shown for all five BAU runs.
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find the changing regimes in both the present and future predictions as well as to
determine the strength and sign of the area change trend.

In the ensemble average for the Northern Hemisphere winter, the significant
changes are the same as for the individual BAU runs shown in Figure 6. In the
stoplight-colored maps, the increase in area of the Antarctic and Greenland fall/
spring #2 (cluster 7) and summer (cluster 11) regimes is shown as a large green
area in Antarctica and western Greenland, while the decrease in area of the cooler
and drier fall/spring #1 regime (cluster 32) is shown as a red central region in
Antarctica and eastern Greenland. Notice that in Antarctica, the present map (left
panel) has a larger red region than the future map (right panel) while the future
map has a larger green region surrounding the red region than the present map.
Similarly, since the Siberian/Canadian winter regime (cluster 26) shrinks from
present to future, it has a reddish-orange color in both maps. The yellow regions
experienced little, if any, area changes.

In Northern Hemisphere summer, the global results for the ensemble average are
again consistent with those for the individual runs shown in Figure 7. The shrink-
ing coldest and driest Antarctic winter regime (cluster 6) appears in red in the
center of Antarctica while the growing Antarctic and Greenland fall/spring #1
regime (cluster 32) appears as a green coastline around Antarctica. The shrinking
arid winter regime (cluster 20) is shown in red along the coastlines of Asia and
North America and as red regions in the Andes and southern Australia. The warm
desert margin regime marked by particularly low precipitation (cluster 16) appears

Figure 8. Calculating 10-yr averages of the ensemble average and clustering with
common climate regimes results in ensemble average snapshots for the
(left) present (2001–2010) and (right) future (2089–2098) for DJF. The first
row is shown in random colors, the second row is shown in similarity colors,
and the third row contains stoplight-colored difference maps with respect
to the (left) present and (right) future. In the difference maps, green re-
gimes grow in area from the present to the future, red regimes shrink from
the present to the future, and yellow regimes remain nearly constant in
global area.
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as dark green regions scattered across the globe. In the future, this regime begins
to dominate parts of the southern United States, Mexico, northern China, and
southeastern Russia.

4. Conclusions
Multivariate Spatio-Temporal Clustering (MSTC) is a powerful technique for
analyzing and comparing results from fully coupled GCMs. Using the full range
of available data, it defines an exhaustive set of recurring climate regimes. These
regimes form a “skeleton” through the “observations” throughout the occupied or
realized portion of climate phase space formed by the fields or variables being
considered. MSTC discretizes these continuous variables simultaneously by par-
titioning the variance (multivariance) in an equal fashion. Therefore, the resulting
climate regimes are of approximately equal volume and are regularly distributed in
phase space.

Since it runs on the largest supercomputers, MSTC can handle large volumes of
complex multivariate data. It is a good change-detection technique because it can
quickly find and quantify trends in long time series data. Since the derived climate
regimes provide a basis for comparison, MSTC facilitates direct comparison of
ensemble members and ensemble and temporal averages. Moreover, by mapping
all land cells to discrete climate states, one can study the dynamical behavior of
any part of the system by way of its climate state occupancy. As a result, MSTC

Figure 9. Calculating 10-yr averages of the ensemble average and clustering with
common climate regimes results in ensemble average snapshots for the
(left) present (2001–2010) and (right) future (2089–2098) for JJA. The first
row is shown in random colors, the second row is shown in similar colors,
and the third row contains stop-light colored difference maps with respect
to the (left) present and (right) future. In the difference maps, green re-
gimes grow in area from the present to the future, red regimes shrink from
the present to the future, and yellow regimes remain nearly constant in
global area.
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is useful for model developers who want to decompose the complex behavior of
the model. In addition, MSTC enables a researcher to more easily grasp the
multivariate behavior of the modeled climate system and the resulting impacts on
global water and energy cycles.

Appropriately derived regimes can further serve as a basis for comparison of the
following: ensemble members to ensemble and temporal averages, different model
scenarios, one model to another, models to measurements, and one set of mea-
surements to another. Appropriate methods for determining regimes for compari-
son of time series data are shown in the green and blue boxes in Table 2. Regimes
are called centroids since they represent the cluster centers in phase space. Normal
clustering analyzes the full multivariance, derives equal-multivariate centroids,
and classifies all observations into the corresponding clusters. This works for a
single time series, multiple time series (like the ensembles presented here), and for
ensemble average time series as illustrated by the first row (shown in green). Since
ensemble members were clustered together (middle column), they may be inter-
compared; however, none of the three types of time series may be compared with
each other since their centroids were derived independently.

The green diagonal in Table 2 represents a one-pass clustering or classification
of each time series using the centroids obtained from normal clustering for the
same time series. This is a self-referential classification because it is performed as
a part of normal clustering. A single time series may be compared to an ensemble
in which it is contained by performing a one-pass clustering using the centroids
derived from that ensemble (blue box in the first column). Again this is self-
referential. An ensemble average time series can be compared to the ensemble
members from which it was obtained by performing a one-pass clustering using
the multiple time series centroids (blue box in the third column) because the
ensemble average time series will be fully contained within the variance of the
collection of ensemble members. This method was used on both the ensemble
average and the temporal averages presented here so that they shared the common
climate regimes derived from the entire ensemble.

On the other hand, classifying an entire ensemble or even an ensemble average
using centroids from a single ensemble member is likely to provide a poor basis
for comparison since the multivariate range of the single time series may not fully
encapsulate that of the other two types of time series. These methods are shown in
red in the second row of Table 2. Similarly, classifying a single ensemble member
or the entire ensemble using centroids derived from only the ensemble average is
problematic because the average is unlikely to have the multivariate range of the

Table 2. Clustering methods for time series comparisons.
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time series data from which it was constructed. These methods are shown in red
in the fourth row of Table 2. When the methods contained in blue or red boxes are
employed, the input data must be normalized using the means and standard
deviations of dataset from which the centroids were derived (see footnote c in
Table 2).

The present analysis of an ensemble of BAU runs highlights the utility of MSTC
for climate change detection and long time series comparisons. In addition, it
exposes some of the dangers of analyzing only ensemble averages. Averaging
multiple runs effectively reduces the climate variability resulting in a time series
unlike any of the runs from which it was derived. While ensemble averages are
good for finding the strongest interannual trends, they are not good for diagnosing
model behavior or understanding climate variability.

By generating only 32 regimes using MSTC and plotting global regime evolu-
tion curves for the entire simulated time period, strong predicted interannual trends
were revealed. These include an increase in global desertification, a decrease in the
cold, dry high-latitude winter conditions typically experienced in North America
and Asia, and significant warming in Antarctica and western Greenland. Addi-
tionally, temporal averages indicate a reduction in precipitation at midlatitudes in
central Asia and North America during the Northern Hemisphere winter. During
the Northern Hemisphere summer, hot and dry conditions typical of desert margins
spread across central Asia and the United States, particularly in the south, and the
cold and dry conditions typical of Arctic continental coastlines, the Andes in South
America, and southern Australia are displaced as warmer and wetter conditions
invade these regions. While almost all regions warmed, the overall tendency for
moisture is one of drying; the ability of the model to put moisture into the atmo-
sphere could not keep up with the increased moisture-holding capacity of the
warmer atmosphere on a global basis. Impacts due to these predicted environmen-
tal changes are of utmost concern to environmental-policy decision makers. (All
results from the analysis of this BAU ensemble from PCM, including color figures
and animations, are available online at http://climate.ornl.gov/pcm.)
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Maltrud, M. E., R. D. Smith, A. J. Semtner, and R. C. Malone, 1998: Global eddy-resolving ocean

simulations driven by 1985–1995 atmospheric winds. J. Geophys. Res., 103, 30 825–30 853.
McMahon, G., S. M. Gregonis, S. W. Waltman, J. M. Omernik, T. D. Thorson, J. A. Freeouf,

A. H. Rorick, and J. E. Keys, 2001: Developing a spatial framework of common ecological
regions for the conterminous United States. Environ. Manage., 28 (3), 293–316.
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